Metal-Organic Frameworks for Biomedical Applications.
Yang Jie,Yang Ying-Wei
Small (Weinheim an der Bergstrasse, Germany)
Metal-organic frameworks (MOFs) are an interesting and useful class of coordination polymers, constructed from metal ion/cluster nodes and functional organic ligands through coordination bonds, and have attracted extensive research interest during the past decades. Due to the unique features of diverse compositions, facile synthesis, easy surface functionalization, high surface areas, adjustable porosity, and tunable biocompatibility, MOFs have been widely used in hydrogen/methane storage, catalysis, biological imaging and sensing, drug delivery, desalination, gas separation, magnetic and electronic devices, nonlinear optics, water vapor capture, etc. Notably, with the rapid development of synthetic methods and surface functionalization strategies, smart MOF-based nanocomposites with advanced bio-related properties have been designed and fabricated to meet the growing demands of MOF materials for biomedical applications. This work outlines the synthesis and functionalization and the recent advances of MOFs in biomedical fields, including cargo (drugs, nucleic acids, proteins, and dyes) delivery for cancer therapy, bioimaging, antimicrobial, biosensing, and biocatalysis. The prospects and challenges in the field of MOF-based biomedical materials are also discussed.
10.1002/smll.201906846
Metal-organic frameworks for stimuli-responsive drug delivery.
Wang Ying,Yan Jianhua,Wen Nachuan,Xiong Hongjie,Cai Shundong,He Qunye,Hu Yaqin,Peng Dongming,Liu Zhenbao,Liu Yanfei
Biomaterials
Metal-organic framework (MOF), a novel hybrid porous material which is composited by metal ions and organic linkers, has drawn increasing attention and became a promising material in the biomedical field owing to their unique properties including large pore volume, high surface area, tunable pore size, versatile functionality and high drug loading efficiency. However, the MOF families and members, and the drug release mechanisms in MOF-based stimuli-responsive drug delivery systems (DDSs) are rarely summarized. Here, we systematically classified the families of MOF and introduced some representative members in MOF families. Moreover, the underlying drug release mechanisms were interpreted according to endogenous stimuli (include pH, glutathione (GSH), adenosine-triphosphate (ATP), ion, glucose, enzyme, HS, and etc.) and the exogenous stimuli (include light, temperature, pressure, and etc.). Furthermore, the remaining challenges and future directions of DDSs based on MOF are discussed and proposed. This review revealed the relationship between the structure and properties of MOF. A better understanding of these release mechanisms under different stimuli would benefit the designing of sophisticated DDSs based on the promising material of MOF.
10.1016/j.biomaterials.2019.119619
Bioengineering of Metal-organic Frameworks for Nanomedicine.
Theranostics
Controlled structure, tunable porosity, and readily chemical functionalizability make metal-organic frameworks (MOFs) a powerful biomedical tool. Nanoscale MOF particles have been increasingly studied as drug carriers, bioimaging agents, and therapeutic agents due to their excellent physiochemical properties. In this review, we start with MOF as a nanocarrier for drug delivery, covering therapeutic MOF agents followed by a comprehensive discussion of surface bioengineering of MOF for improved biostability, biocompatibility, and targeted delivery. Finally, we detail the challenges and prospects of the future of MOF research for biomedical applications.
10.7150/thno.31918
AIE-MOF materials for biological applications.
Mehmood Tahir,Reddy J Prakasha
Progress in molecular biology and translational science
Metal-Organic Frameworks (MOFs), coming under the realm of coordination chemistry, are unparalleled and the most studied among the group of porous materials. Structurally, these are well-defined three-dimensional crystalline products that can be tuned for various potential applications with a range of physico-chemical properties. More recently, aggregation-induced emission (AIE) and AIE of MOF material has attracted tremendous attention due to promising applications in biology. However, a chapter summarizing the work in AIE-MOFs materials has never been reported till date. A comprehensive review on the AIE and MOFs separately is beyond the reach of this chapter. Hence, we have summarized overview of recent developments in the syntheses and biological applications such as cell imaging, heparin detection, and drug delivery. In the end, conclusion, prospects and challenges in the arena of AIE-MOF materials are also highlighted.
10.1016/bs.pmbts.2021.06.013
Metal-Organic Framework Nanoparticles.
Wang Shunzhi,McGuirk C Michael,d'Aquino Andrea,Mason Jarad A,Mirkin Chad A
Advanced materials (Deerfield Beach, Fla.)
Due to their well-defined 3D architectures, permanent porosity, and diverse chemical functionalities, metal-organic framework nanoparticles (MOF NPs) are an emerging class of modular nanomaterials. Herein, recent developments in the synthesis and postsynthetic surface functionalization of MOF NPs that strengthen the fundamental understanding of how such structures form and grow are highlighted; the internal structure and external surface properties of these novel nanomaterials are highlighted as well. These fundamental advances have resulted in MOF NPs being used as components in chemical sensors, biological probes, and membrane separation materials, as well as building blocks for colloidal crystal engineering.
10.1002/adma.201800202
Polymer/Metal Organic Framework (MOF) Nanocomposites for Biomedical Applications.
Molecules (Basel, Switzerland)
The utilization of polymer/metal organic framework (MOF) nanocomposites in various biomedical applications has been widely studied due to their unique properties that arise from MOFs or hybrid composite systems. This review focuses on the types of polymer/MOF nanocomposites used in drug delivery and imaging applications. Initially, a comprehensive introduction to the synthesis and structure of MOFs and bio-MOFs is presented. Subsequently, the properties and the performance of polymer/MOF nanocomposites used in these applications are examined, in relation to the approach applied for their synthesis: (i) non-covalent attachment, (ii) covalent attachment, (iii) polymer coordination to metal ions, (iv) MOF encapsulation in polymers, and (v) other strategies. A critical comparison and discussion of the effectiveness of polymer/MOF nanocomposites regarding their synthesis methods and their structural characteristics is presented.
10.3390/molecules25010185