Inflammatory Cytokines and Chemokines as Therapeutic Targets in Heart Failure.
Hanna Anis,Frangogiannis Nikolaos G
Cardiovascular drugs and therapy
Heart failure exhibits remarkable pathophysiologic heterogeneity. A large body of evidence suggests that regardless of the underlying etiology, heart failure is associated with induction of cytokines and chemokines that may contribute to the pathogenesis of adverse remodeling, and systolic and diastolic dysfunction. The pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-6 have been extensively implicated in the pathogenesis of heart failure. Inflammatory cytokines modulate phenotype and function of all myocardial cells, suppressing contractile function in cardiomyocytes, inducing inflammatory activation in macrophages, stimulating microvascular inflammation and dysfunction, and promoting a matrix-degrading phenotype in fibroblasts. Moreover, cytokine-induced growth factor synthesis may exert chronic fibrogenic actions contributing to the pathogenesis of heart failure with preserved ejection fraction (HFpEF). In addition to their role in adverse cardiac remodeling, some inflammatory cytokines may also exert protective actions on cardiomyocytes under conditions of stress. Chemokines, such as CCL2, are also upregulated in failing hearts and may stimulate recruitment of pro-inflammatory leukocytes, promoting myocardial injury, fibrotic remodeling, and dysfunction. Although experimental evidence suggests that cytokine and chemokine targeting may hold therapeutic promise in heart failure, clinical translation remains challenging. This review manuscript summarizes our knowledge on the role of TNF-α, IL-1, IL-6, and CCL2 in the pathogenesis of heart failure, and discusses the promises and challenges of targeted anti-cytokine therapy. Dissection of protective and maladaptive cellular actions of cytokines in the failing heart, and identification of patient subsets with overactive or dysregulated myocardial inflammatory responses are required for design of successful therapeutic approaches.
10.1007/s10557-020-07071-0
A past and present overview of macrophage metabolism and functional outcomes.
Curi Rui,de Siqueira Mendes Renata,de Campos Crispin Luiz Aurélio,Norata Giuseppe Danilo,Sampaio Sandra Coccuzzo,Newsholme Philip
Clinical science (London, England : 1979)
In 1986 and 1987, Philip Newsholme et al. reported macrophages utilize glutamine, as well as glucose, at high rates. These authors measured key enzyme activities and consumption and production levels of metabolites in incubated or cultured macrophages isolated from the mouse or rat intraperitoneal cavity. Metabolic pathways essential for macrophage function were then determined. Macrophages utilize glucose to generate (i) ATP in the pathways of glycolysis and mitochondrial oxidative phosphorylation, (ii) glycerol 3-phosphate for the synthesis of phospholipids and triacylglycerols, (iii) NADPH for the production of reactive oxygen species (ROS) and (iv) ribose for the synthesis of RNA and subsequently production and secretion of protein mediators (e.g. cytokines). Glutamine plays an essential role in macrophage metabolism and function, as it is required for energy production but also provides nitrogen for synthesis of purines, pyrimidines and thus RNA. Macrophages also utilize fatty acids for both energy production in the mitochondria and lipid synthesis essential to plasma membrane turnover and lipid meditator production. Recent studies utilizing metabolomic approaches, transcriptional and metabolite tracking technologies have detailed mitochondrial release of tricarboxylic acid (TCA) intermediates (e.g. citrate and succinate) to the cytosol, which then regulate pro-inflammatory responses. Macrophages can reprogramme their metabolism and function according to environmental conditions and stimuli in order to polarize phenotype so generating pro- or anti-inflammatory cells. Changes in macrophage metabolism result in modified function/phenotype and vice versa. The plasticity of macrophage metabolism allows the cell to quickly respond to changes in environmental conditions such as those induced by hormones and/or inflammation. A past and present overview of macrophage metabolism and impact of endocrine regulation and the relevance to human disease are described in this review.
10.1042/CS20170220
Glycolytic Stimulation Is Not a Requirement for M2 Macrophage Differentiation.
Wang Feilong,Zhang Song,Vuckovic Ivan,Jeon Ryounghoon,Lerman Amir,Folmes Clifford D,Dzeja Petras P,Herrmann Joerg
Cell metabolism
Enhanced glucose uptake and a switch to glycolysis are key traits of M1 macrophages, whereas enhanced fatty acid oxidation and oxidative phosphorylation are the main metabolic characteristics of M2 macrophages. Recent studies challenge this traditional view, indicating that glycolysis may also be critically important for M2 macrophage differentiation, based on experiments with 2-DG. Here we confirm the inhibitory effect of 2-DG on glycolysis, but also demonstrate that 2-DG impairs oxidative phosphorylation and significantly reduces C-labeled Krebs cycle metabolites and intracellular ATP levels. These metabolic derangements were associated with reduced JAK-STAT6 pathway activity and M2 differentiation marker expression. While glucose deprivation and glucose substitution with galactose effectively suppressed glycolytic activity, there was no effective suppression of oxidative phosphorylation, intracellular ATP levels, STAT6 phosphorylation, and M2 differentiation marker expression. These data indicate that glycolytic stimulation is not required for M2 macrophage differentiation as long as oxidative phosphorylation remains active.
10.1016/j.cmet.2018.08.012
Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype.
Freemerman Alex J,Johnson Amy R,Sacks Gina N,Milner J Justin,Kirk Erin L,Troester Melissa A,Macintyre Andrew N,Goraksha-Hicks Pankuri,Rathmell Jeffery C,Makowski Liza
The Journal of biological chemistry
Glucose is a critical component in the proinflammatory response of macrophages (MΦs). However, the contribution of glucose transporters (GLUTs) and the mechanisms regulating subsequent glucose metabolism in the inflammatory response are not well understood. Because MΦs contribute to obesity-induced inflammation, it is important to understand how substrate metabolism may alter inflammatory function. We report that GLUT1 (SLC2A1) is the primary rate-limiting glucose transporter on proinflammatory-polarized MΦs. Furthermore, in high fat diet-fed rodents, MΦs in crown-like structures and inflammatory loci in adipose and liver, respectively, stain positively for GLUT1. We hypothesized that metabolic reprogramming via increased glucose availability could modulate the MΦ inflammatory response. To increase glucose uptake, we stably overexpressed the GLUT1 transporter in RAW264.7 MΦs (GLUT1-OE MΦs). Cellular bioenergetics analysis, metabolomics, and radiotracer studies demonstrated that GLUT1 overexpression resulted in elevated glucose uptake and metabolism, increased pentose phosphate pathway intermediates, with a complimentary reduction in cellular oxygen consumption rates. Gene expression and proteome profiling analysis revealed that GLUT1-OE MΦs demonstrated a hyperinflammatory state characterized by elevated secretion of inflammatory mediators and that this effect could be blunted by pharmacologic inhibition of glycolysis. Finally, reactive oxygen species production and evidence of oxidative stress were significantly enhanced in GLUT1-OE MΦs; antioxidant treatment blunted the expression of inflammatory mediators such as PAI-1 (plasminogen activator inhibitor 1), suggesting that glucose-mediated oxidative stress was driving the proinflammatory response. Our results indicate that increased utilization of glucose induced a ROS-driven proinflammatory phenotype in MΦs, which may play an integral role in the promotion of obesity-associated insulin resistance.
10.1074/jbc.M113.522037
Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages.
Van den Bossche Jan,Baardman Jeroen,Otto Natasja A,van der Velden Saskia,Neele Annette E,van den Berg Susan M,Luque-Martin Rosario,Chen Hung-Jen,Boshuizen Marieke C S,Ahmed Mohamed,Hoeksema Marten A,de Vos Alex F,de Winther Menno P J
Cell reports
Macrophages are innate immune cells that adopt diverse activation states in response to their microenvironment. Editing macrophage activation to dampen inflammatory diseases by promoting the repolarization of inflammatory (M1) macrophages to anti-inflammatory (M2) macrophages is of high interest. Here, we find that mouse and human M1 macrophages fail to convert into M2 cells upon IL-4 exposure in vitro and in vivo. In sharp contrast, M2 macrophages are more plastic and readily repolarized into an inflammatory M1 state. We identify M1-associated inhibition of mitochondrial oxidative phosphorylation as the factor responsible for preventing M1→M2 repolarization. Inhibiting nitric oxide production, a key effector molecule in M1 cells, dampens the decline in mitochondrial function to improve metabolic and phenotypic reprogramming to M2 macrophages. Thus, inflammatory macrophage activation blunts oxidative phosphorylation, thereby preventing repolarization. Therapeutically restoring mitochondrial function might be useful to improve the reprogramming of inflammatory macrophages into anti-inflammatory cells to control disease.
10.1016/j.celrep.2016.09.008
Cellular metabolism and macrophage functional polarization.
Zhu Linnan,Zhao Qingjie,Yang Tao,Ding Wenjun,Zhao Yong
International reviews of immunology
Macrophages are a functionally heterogeneous cell population that is mainly shaped by a variety of microenvironmental stimuli. Interferon γ (IFN-γ), interleukin-1β (IL-1β), and lipopolysaccharide (LPS) induce a classical activation of macrophages (M1), whereas IL-4 and IL-13 induce an alternative activation program in macrophages (M2). Reprogramming of intracellular metabolisms is required for the proper polarization and functions of activated macrophages. Similar to the Warburg effect observed in tumor cells, M1 macrophages increase glucose consumption and lactate release and decreased oxygen consumption rate. In comparison, M2 macrophages mainly employ oxidative glucose metabolism pathways. In addition, fatty acids, vitamins, and iron metabolisms are also related to macrophage polarization. However, detailed metabolic pathways involved in macrophages have remained elusive. Understanding the bidirectional interactions between cellular metabolism and macrophage functions in physiological and pathological situations and the regulatory pathways involved may offer novel therapies for macrophage-associated diseases.
10.3109/08830185.2014.969421
Cardiac Fibroblastic Niches in Homeostasis and Inflammation.
Circulation research
Fibroblasts are essential for building and maintaining the structural integrity of all organs. Moreover, fibroblasts can acquire an inflammatory phenotype to accommodate immune cells in specific niches and to provide migration, differentiation, and growth factors. In the heart, balancing of fibroblast activity is critical for cardiac homeostasis and optimal organ function during inflammation. Fibroblasts sustain cardiac homeostasis by generating local niche environments that support housekeeping functions and by actively engaging in intercellular cross talk. During inflammatory perturbations, cardiac fibroblasts rapidly switch to an inflammatory state and actively communicate with infiltrating immune cells to orchestrate immune cell migration and activity. Here, we summarize the current knowledge on the molecular landscape of cardiac fibroblasts, focusing on their dual role in promoting tissue homeostasis and modulating immune cell-cardiomyocyte interaction. In addition, we discuss potential future avenues for manipulating cardiac fibroblast activity during myocardial inflammation.
10.1161/CIRCRESAHA.124.323892
Mitochondria regulate proliferation in adult cardiac myocytes.
The Journal of clinical investigation
Newborn mammalian cardiomyocytes quickly transition from a fetal to an adult phenotype that utilizes mitochondrial oxidative phosphorylation but loses mitotic capacity. We tested whether forced reversal of adult cardiomyocytes back to a fetal glycolytic phenotype would restore proliferative capacity. We deleted Uqcrfs1 (mitochondrial Rieske iron-sulfur protein, RISP) in hearts of adult mice. As RISP protein decreased, heart mitochondrial function declined, and glucose utilization increased. Simultaneously, the hearts underwent hyperplastic remodeling during which cardiomyocyte number doubled without cellular hypertrophy. Cellular energy supply was preserved, AMPK activation was absent, and mTOR activation was evident. In ischemic hearts with RISP deletion, new cardiomyocytes migrated into the infarcted region, suggesting the potential for therapeutic cardiac regeneration. RNA sequencing revealed upregulation of genes associated with cardiac development and proliferation. Metabolomic analysis revealed a decrease in α-ketoglutarate (required for TET-mediated demethylation) and an increase in S-adenosylmethionine (required for methyltransferase activity). Analysis revealed an increase in methylated CpGs near gene transcriptional start sites. Genes that were both differentially expressed and differentially methylated were linked to upregulated cardiac developmental pathways. We conclude that decreased mitochondrial function and increased glucose utilization can restore mitotic capacity in adult cardiomyocytes, resulting in the generation of new heart cells, potentially through the modification of substrates that regulate epigenetic modification of genes required for proliferation.
10.1172/JCI165482
Crosstalk between macrophages and cardiac cells after myocardial infarction.
Cell communication and signaling : CCS
Cardiovascular diseases, such as myocardial infarction (MI), are a leading cause of death worldwide. Acute MI (AMI) inflicts massive injury to the coronary microcirculation, causing large-scale cardiomyocyte death due to ischemia and hypoxia. Inflammatory cells such as monocytes and macrophages migrate to the damaged area to clear away dead cells post-MI. Macrophages are pleiotropic cells of the innate immune system, which play an essential role in the initial inflammatory response that occurs following MI, inducing subsequent damage and facilitating recovery. Besides their recognized role within the immune response, macrophages participate in crosstalk with other cells (including cardiomyocytes, fibroblasts, immune cells, and vascular endothelial cells) to coordinate post-MI processes within cardiac tissue. Macrophage-secreted exosomes have recently attracted increasing attention, which has led to a more elaborate understanding of macrophage function. Currently, the functional roles of macrophages in the microenvironment of the infarcted heart, particularly with regard to their interaction with surrounding cells, remain unclear. Understanding the specific mechanisms that mediate this crosstalk is essential in treating MI. In this review, we discuss the origin of macrophages, changes in their distribution post-MI, phenotypic and functional plasticity, as well as the specific signaling pathways involved, with a focus on the crosstalk with other cells in the heart. Thus, we provide a new perspective on the treatment of MI. Further in-depth research is required to elucidate the mechanisms underlying crosstalk between macrophages and other cells within cardiac tissue for the identification of potential therapeutic targets. Video Abstract.
10.1186/s12964-023-01105-4
Cell migration during heart regeneration in zebrafish.
Developmental dynamics : an official publication of the American Association of Anatomists
Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc.
10.1002/dvdy.24411
Mydgf promotes Cardiomyocyte proliferation and Neonatal Heart regeneration.
Wang Yuyao,Li Yan,Feng Jie,Liu Weijing,Li Yandong,Liu Jun,Yin Qianqian,Lian Hong,Liu Lihui,Nie Yu
Theranostics
Myeloid-derived growth factor (Mydgf), a paracrine protein secreted by bone marrow-derived monocytes and macrophages, was found to protect against cardiac injury following myocardial infarction (MI) in adult mice. We speculated that Mydgf might improve heart function myocardial regeneration, which is essential for discovering the target to reverse heart failure. Two genetic mouse lines were used: global Mydgf knockout () and mice. Two models of cardiac injury, apical resection was performed in neonatal and MI was performed in adult mice. Quantitative reverse transcription-polymerase chain reaction, western blot and flow cytometry were performed to study the protein expression. Immunofluorescence was performed to detect the proliferation of cardiomyocytes. Heart regeneration and cardiac function were evaluated by Masson's staining and echocardiography, respectively. RNA sequencing was employed to identify the key involved in Mydgf-induced cardiomyocyte proliferation. Mydgf recombinant protein injection was performed as a therapy for cardiac repair post MI in adult mice. Mydgf expression could be significantly induced in neonatal mouse hearts after cardiac injury. Unexpectedly, we found that Mydgf was predominantly expressed by endothelial cells rather than macrophages in injured neonatal hearts. Mydgf deficiency impeded neonatal heart regeneration and injury-induced cardiomyocyte proliferation. Mydgf recombinant protein promoted primary mouse cardiomyocyte proliferation. Employing RNA sequencing and functional verification, we demonstrated that c-Myc/FoxM1 pathway mediated Mydgf-induced cardiomyocyte expansion. Mydgf recombinant protein improved cardiac function in adult mice after MI injury with inducing cardiomyocyte proliferation. Mydgf promotes cardiomyocyte proliferation by activating c-Myc/FoxM1 pathway and improves heart regeneration both in neonatal and adult mice after cardiac injury, providing a potential target to reverse cardiac remodeling and heart failure.
10.7150/thno.44281
Inhibition of fatty acid oxidation enables heart regeneration in adult mice.
Nature
Postnatal maturation of cardiomyocytes is characterized by a metabolic switch from glycolysis to fatty acid oxidation, chromatin reconfiguration and exit from the cell cycle, instating a barrier for adult heart regeneration. Here, to explore whether metabolic reprogramming can overcome this barrier and enable heart regeneration, we abrogate fatty acid oxidation in cardiomyocytes by inactivation of Cpt1b. We find that disablement of fatty acid oxidation in cardiomyocytes improves resistance to hypoxia and stimulates cardiomyocyte proliferation, allowing heart regeneration after ischaemia-reperfusion injury. Metabolic studies reveal profound changes in energy metabolism and accumulation of α-ketoglutarate in Cpt1b-mutant cardiomyocytes, leading to activation of the α-ketoglutarate-dependent lysine demethylase KDM5 (ref. ). Activated KDM5 demethylates broad H3K4me3 domains in genes that drive cardiomyocyte maturation, lowering their transcription levels and shifting cardiomyocytes into a less mature state, thereby promoting proliferation. We conclude that metabolic maturation shapes the epigenetic landscape of cardiomyocytes, creating a roadblock for further cell divisions. Reversal of this process allows repair of damaged hearts.
10.1038/s41586-023-06585-5
Mechanisms of Cardiac Regeneration.
Uygur Aysu,Lee Richard T
Developmental cell
Adult humans fail to regenerate their hearts following injury, and this failure to regenerate myocardium is a leading cause of heart failure and death worldwide. Although all adult mammals appear to lack significant cardiac regeneration potential, some vertebrates can regenerate myocardium throughout life. In addition, new studies indicate that mammals have cardiac regeneration potential during development and very soon after birth. The mechanisms of heart regeneration among model organisms, including neonatal mice, appear remarkably similar. Orchestrated waves of inflammation, matrix deposition and remodeling, and cardiomyocyte proliferation are commonly seen in heart regeneration models. Understanding why adult mammals develop extensive scarring instead of regeneration is a crucial goal for regenerative biology.
10.1016/j.devcel.2016.01.018
Model organisms at the heart of regeneration.
Price Eleanor L,Vieira Joaquim M,Riley Paul R
Disease models & mechanisms
Heart failure is a major cause of death worldwide owing to the inability of the adult human heart to regenerate after a heart attack. However, many vertebrate species are capable of complete cardiac regeneration following injury. In this Review, we discuss the various model organisms of cardiac regeneration, and outline what they have taught us thus far about the cellular and molecular responses essential for optimal cardiac repair. We compare across different species, highlighting evolutionarily conserved mechanisms of regeneration and demonstrating the importance of developmental gene expression programmes, plasticity of the heart and the pathophysiological environment for the regenerative response. Additionally, we discuss how the findings from these studies have led to improvements in cardiac repair in preclinical models such as adult mice and pigs, and discuss the potential to translate these findings into therapeutic approaches for human patients following myocardial infarction.
10.1242/dmm.040691
Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation.
Nature
Although mammalian hearts show almost no ability to regenerate, there is a growing initiative to determine whether existing cardiomyocytes or progenitor cells can be coaxed into eliciting a regenerative response. In contrast to mammals, several non-mammalian vertebrate species are able to regenerate their hearts, including the zebrafish, which can fully regenerate its heart after amputation of up to 20% of the ventricle. To address directly the source of newly formed cardiomyocytes during zebrafish heart regeneration, we first established a genetic strategy to trace the lineage of cardiomyocytes in the adult fish, on the basis of the Cre/lox system widely used in the mouse. Here we use this system to show that regenerated heart muscle cells are derived from the proliferation of differentiated cardiomyocytes. Furthermore, we show that proliferating cardiomyocytes undergo limited dedifferentiation characterized by the disassembly of their sarcomeric structure, detachment from one another and the expression of regulators of cell-cycle progression. Specifically, we show that the gene product of polo-like kinase 1 (plk1) is an essential component of cardiomyocyte proliferation during heart regeneration. Our data provide the first direct evidence for the source of proliferating cardiomyocytes during zebrafish heart regeneration and indicate that stem or progenitor cells are not significantly involved in this process.
10.1038/nature08899
Macrophages are required for neonatal heart regeneration.
The Journal of clinical investigation
Myocardial infarction (MI) leads to cardiomyocyte death, which triggers an immune response that clears debris and restores tissue integrity. In the adult heart, the immune system facilitates scar formation, which repairs the damaged myocardium but compromises cardiac function. In neonatal mice, the heart can regenerate fully without scarring following MI; however, this regenerative capacity is lost by P7. The signals that govern neonatal heart regeneration are unknown. By comparing the immune response to MI in mice at P1 and P14, we identified differences in the magnitude and kinetics of monocyte and macrophage responses to injury. Using a cell-depletion model, we determined that heart regeneration and neoangiogenesis following MI depends on neonatal macrophages. Neonates depleted of macrophages were unable to regenerate myocardia and formed fibrotic scars, resulting in reduced cardiac function and angiogenesis. Immunophenotyping and gene expression profiling of cardiac macrophages from regenerating and nonregenerating hearts indicated that regenerative macrophages have a unique polarization phenotype and secrete numerous soluble factors that may facilitate the formation of new myocardium. Our findings suggest that macrophages provide necessary signals to drive angiogenesis and regeneration of the neonatal mouse heart. Modulating inflammation may provide a key therapeutic strategy to support heart regeneration.
10.1172/JCI72181
Heart regeneration using pluripotent stem cells.
Kadota Shin,Tanaka Yuki,Shiba Yuji
Journal of cardiology
Pluripotent stem cells (PSCs), which include embryonic and induced pluripotent stem cells (ESCs and iPSCs, respectively), have great potential in regenerative medicine for heart diseases due to their virtually unlimited cardiogenic capacity. Many preclinical studies have described the functional benefits after transplantation of PSC-derived cardiomyocytes (PSC-CMs). However, transient ventricular arrhythmias were detected after injection into non-human primates and swine ischemic hearts; as engrafted PSC-CMs form an electrical coupling between host and graft, the immature characteristics of PSC-CMs may serve as an ectopic pacemaker. We are entering a critical time in the development of novel therapies using PSC-CMs, with the recent first clinical trial using human iPSC-CMs (hiPSC-CMs) being launched in Japan. In this review, we summarize the updated knowledge, perspectives, and limitations of PSC-CMs for heart regeneration.
10.1016/j.jjcc.2020.03.013
Innate Mechanisms of Heart Regeneration.
Cold Spring Harbor perspectives in biology
Heart regeneration is a remarkable process whereby regrowth of damaged cardiac tissue rehabilitates organ anatomy and function. Unfortunately, the human heart is highly resistant to regeneration, which creates a shortage of cardiomyocytes in the wake of ischemic injury, and explains, in part, why coronary artery disease remains a leading cause of death worldwide. Luckily, a detailed blueprint for achieving therapeutic heart regeneration already exists in nature because several lower vertebrate species successfully regenerate amputated or damaged heart muscle through robust cardiomyocyte proliferation. A growing number of species are being interrogated for cardiac regenerative potential, and several commonalities have emerged between those animals showing high or low innate capabilities. In this review, we provide a historical perspective on the field, discuss how regenerative potential is influenced by cardiomyocyte properties, mitogenic signals, and chromatin accessibility, and highlight unanswered questions under active investigation. Ultimately, delineating why heart regeneration occurs preferentially in some organisms, but not in others, will uncover novel therapeutic inroads for achieving cardiac restoration in humans.
10.1101/cshperspect.a040766
Cardiac regeneration strategies: Staying young at heart.
Tzahor Eldad,Poss Kenneth D
Science (New York, N.Y.)
The human heart is continually operating as a muscular pump, contracting, on average, 80 times per minute to propel 8000 liters of blood through body tissues each day. Whereas damaged skeletal muscle has a profound capacity to regenerate, heart muscle, at least in mammals, has poor regenerative potential. This deficiency is attributable to the lack of resident cardiac stem cells, combined with roadblocks that limit adult cardiomyocytes from entering the cell cycle and completing division. Insights for regeneration have recently emerged from studies of animals with an elevated innate capacity for regeneration, the innovation of stem cell and reprogramming technologies, and a clearer understanding of the cardiomyocyte genetic program and key extrinsic signals. Methods to augment heart regeneration now have potential to counteract the high morbidity and mortality of cardiovascular disease.
10.1126/science.aam5894
Heart regeneration in zebrafish.
Poss Kenneth D,Wilson Lindsay G,Keating Mark T
Science (New York, N.Y.)
Cardiac injury in mammals and amphibians typically leads to scarring, with minimal regeneration of heart muscle. Here, we demonstrate histologically that zebrafish fully regenerate hearts within 2 months of 20% ventricular resection. Regeneration occurs through robust proliferation of cardiomyocytes localized at the leading epicardial edge of the new myocardium. The hearts of zebrafish with mutations in the Mps1 mitotic checkpoint kinase, a critical cell cycle regulator, failed to regenerate and formed scars. Thus, injury-induced cardiomyocyte proliferation in zebrafish can overcome scar formation, allowing cardiac muscle regeneration. These findings indicate that zebrafish will be useful for genetically dissecting the molecular mechanisms of cardiac regeneration.
10.1126/science.1077857
Wnt Signaling in Heart Development and Regeneration.
Current cardiology reports
PURPOSE OF REVIEW:Cardiovascular diseases are the leading cause of death worldwide, largely due to the limited regenerative capacity of the adult human heart. In contrast, teleost zebrafish hearts possess natural regeneration capacity by proliferation of pre-existing cardiomyocytes after injury. Hearts of mice can regenerate if injured in a few days after birth, which coincides with the transient capacity for cardiomyocyte proliferation. This review tends to elaborate the roles and mechanisms of Wnt/β-catenin signaling in heart development and regeneration in mammals and non-mammalian vertebrates. RECENT FINDINGS:Studies in zebrafish, mice, and human embryonic stem cells demonstrate the binary effect for Wnt/β-catenin signaling during heart development. Both Wnts and Wnt antagonists are induced in multiple cell types during cardiac development and injury repair. In this review, we summarize composites of the Wnt signaling pathway and their different action routes, followed by the discussion of their involvements in cardiac specification, proliferation, and patterning. We provide overviews about canonical and non-canonical Wnt activity during heart homeostasis, remodeling, and regeneration. Wnt/β-catenin signaling exhibits biphasic and antagonistic effects on cardiac specification and differentiation depending on the stage of embryogenesis. Inhibition of Wnt signaling is beneficial for cardiac wound healing and functional recovery after injury. Understanding of the roles and mechanisms of Wnt signaling pathway in injured animal hearts will contribute to the development of potential therapeutics for human diseased hearts.
10.1007/s11886-022-01756-8
Heart regeneration.
Laflamme Michael A,Murry Charles E
Nature
Heart failure plagues industrialized nations, killing more people than any other disease. It usually results from a deficiency of specialized cardiac muscle cells known as cardiomyocytes, and a robust therapy to regenerate lost myocardium could help millions of patients every year. Heart regeneration is well documented in amphibia and fish and in developing mammals. After birth, however, human heart regeneration becomes limited to very slow cardiomyocyte replacement. Several experimental strategies to remuscularize the injured heart using adult stem cells and pluripotent stem cells, cellular reprogramming and tissue engineering are in progress. Although many challenges remain, these interventions may eventually lead to better approaches to treat or prevent heart failure.
10.1038/nature10147
Heart regeneration: 20 years of progress and renewed optimism.
Developmental cell
Cardiovascular disease is a leading cause of death worldwide, and thus there remains great interest in regenerative approaches to treat heart failure. In the past 20 years, the field of heart regeneration has entered a renaissance period with remarkable progress in the understanding of endogenous heart regeneration, stem cell differentiation for exogenous cell therapy, and cell-delivery methods. In this review, we highlight how this new understanding can lead to viable strategies for human therapy. For the near term, drugs, electrical and mechanical devices, and heart transplantation will remain mainstays of cardiac therapies, but eventually regenerative therapies based on fundamental regenerative biology may offer more permanent solutions for patients with heart failure.
10.1016/j.devcel.2022.01.012
Regeneration of the heart.
Steinhauser Matthew L,Lee Richard T
EMBO molecular medicine
The death of cardiac myocytes diminishes the heart's pump function and is a major cause of heart failure, one of the dominant causes of death worldwide. Other than transplantation, there are no therapies that directly address the loss of cardiac myocytes, which explains the current excitement in cardiac regeneration. The field is evolving in two important directions. First, although endogenous mammalian cardiac regeneration clearly seems to decline rapidly after birth, it may still persist in adulthood. The careful elucidation of the cellular and molecular mechanisms of endogenous heart regeneration may therefore provide an opportunity for developing therapeutic interventions that amplify this process. Second, recent breakthroughs have enabled reprogramming of cells that were apparently terminally differentiated, either by dedifferentiation into pluripotent stem cells or by transdifferentiation into cardiac myocytes. These achievements challenge our conceptions of what is possible in terms of heart regeneration. In this review, we discuss the current status of research on cardiac regeneration, with a focus on the challenges that hold back therapeutic development.
10.1002/emmm.201100175