Endothelial caveolin and its scaffolding domain in cancer.
Bernatchez Pascal
Cancer metastasis reviews
Since the initial reports implicating caveolin-1 (CAV1) in neoplasia, the scientific community has made tremendous strides towards understanding how CAV1-dependent signaling and caveolae assembly modulate solid tumor growth. Once a solid neoplastic tumor reaches a certain size, it will increasingly rely on its stroma to meet the metabolic demands of the rapidly proliferating cancer cells, a limitation typically but not exclusively addressed via the formation of new blood vessels. Landmark studies using xenograft tumor models have highlighted the importance of stromal CAV1 during neoplastic blood vessel growth from preexisting vasculature, a process called angiogenesis, and helped identify endothelium-specific signaling events regulated by CAV1, such as vascular endothelial growth factor (VEGF) receptors as well as the endothelial nitric oxide (NO) synthase (eNOS) systems. This chapter provides a glimpse into the signaling events modulated by CAV1 and its scaffolding domain (CSD) during endothelial-specific aspects of neoplastic growth, such as vascular permeability, angiogenesis, and mechanotransduction.
10.1007/s10555-020-09895-6
A mechanosensitive caveolae-invadosome interplay drives matrix remodelling for cancer cell invasion.
Nature cell biology
Invadosomes and caveolae are mechanosensitive structures that are implicated in metastasis. Here, we describe a unique juxtaposition of caveola clusters and matrix degradative invadosomes at contact sites between the plasma membrane of cancer cells and constricting fibrils both in 2D and 3D type I collagen matrix environments. Preferential association between caveolae and straight segments of the fibrils, and between invadosomes and bent segments of the fibrils, was observed along with matrix remodelling. Caveola recruitment precedes and is required for invadosome formation and activity. Reciprocally, invadosome disruption results in the accumulation of fibril-associated caveolae. Moreover, caveolae and the collagen receptor β1 integrin co-localize at contact sites with the fibrils, and integrins control caveola recruitment to fibrils. In turn, caveolae mediate the clearance of β1 integrin and collagen uptake in an invadosome-dependent and collagen-cleavage-dependent mechanism. Our data reveal a reciprocal interplay between caveolae and invadosomes that coordinates adhesion to and proteolytic remodelling of confining fibrils to support tumour cell dissemination.
10.1038/s41556-023-01272-z