Platelet-derived growth factor receptor-β (PDGFRβ) lineage tracing highlights perivascular cell to myofibroblast transdifferentiation during post-traumatic osteoarthritis.
Sono Takashi,Hsu Ching-Yun,Negri Stefano,Miller Sarah,Wang Yiyun,Xu Jiajia,Meyers Carolyn A,Peault Bruno,James Aaron W
Journal of orthopaedic research : official publication of the Orthopaedic Research Society
Pericytes ubiquitously surround capillaries and microvessels within vascularized tissues and have diverse functions after tissue injury. In addition to regulation of angiogenesis and tissue regeneration after injury, pericytes also contribute to organ fibrosis. Destabilization of the medial meniscus (DMM) phenocopies post-traumatic osteoarthritis, yet little is known regarding the impact of DMM surgery on knee joint-associated pericytes and their cellular descendants. Here, inducible platelet-derived growth factor receptor-β (PDGFRβ)-CreER reporter mice were subjected to DMM surgery, and lineage tracing studies performed over an 8-week period. Results showed that at baseline PDGFRβ reporter activity highlights abluminal perivascular cells within synovial and infrapatellar fat pad (IFP) tissues. DMM induces a temporospatially patterned increase in vascular density within synovial and subsynovial tissues. Marked vasculogenesis within IFP was accompanied by expansion of PDGFRβ reporter perivascular cell numbers, detachment of mGFP descendants from vessel walls, and aberrant adoption of myofibroblastic markers among mGFP cells including α-SMA, ED-A, and TGF-β1. At later timepoints, fibrotic changes and vascular maturation occurred within subsynovial tissues, with the redistribution of PDGFRβ cellular descendants back to their perivascular niche. In sum, PDGFRβ lineage tracing allows for tracing of perivascular cell fate within the diarthrodial joint. Further, destabilization of the joint induces vascular and fibrogenic changes of the IFP accompanied by perivascular to myofibroblast transdifferentiation.
10.1002/jor.24648
Disentangling the detrimental effects of local from systemic adipose tissue dysfunction on articular cartilage in the knee.
Osteoarthritis and cartilage
OBJECTIVE:Obesity increases osteoarthritis (OA) risk due to adipose tissue dysfunction with associated metabolic syndrome and excess weight. Lipodystrophy syndromes exhibit systemic metabolic and inflammatory abnormalities similar to obesity without biomechanical overloading. Here, we used lipodystrophy mouse models to investigate the effects of systemic versus intra-articular adipose tissue dysfunction on the knee. METHODS:Intra-articular adipose tissue development was studied using reporter mice. Mice with selective lipodystrophy of intra-articular adipose tissue were generated by conditional knockout (cKO) of Bscl2 in Gdf5-lineage cells, and compared with whole-body Bscl2 knockout (KO) mice with generalised lipodystrophy and associated systemic metabolic dysfunction. OA was induced by surgically destabilising the medial meniscus (DMM) and obesity by high-fat diet (HFD). Gene expression was analysed by quantitative RT-PCR and tissues were analysed histologically. RESULTS:The infrapatellar fat pad (IFP), in contrast to overlying subcutaneous adipose tissue, developed from a template established from the Gdf5-expressing joint interzone during late embryogenesis, and was populated shortly after birth by adipocytes stochastically arising from Pdgfrα-expressing Gdf5-lineage progenitors. While female Bscl2 KO mice with generalised lipodystrophy developed spontaneous knee cartilage damage, Bscl2 cKO mice with intra-articular lipodystrophy did not, despite the presence of synovial hyperplasia and inflammation of the residual IFP. Furthermore, male Bscl2 cKO mice showed no worse cartilage damage after DMM. However, female Bscl2 cKO mice showed increased susceptibility to the cartilage-damaging effects of HFD-induced obesity. CONCLUSION:Our findings emphasise the prevalent role of systemic metabolic and inflammatory effects in impairing cartilage homeostasis, with a modulatory role for intra-articular adipose tissue.
10.1016/j.joca.2024.07.006