Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair.
Agarwal Rachit,García Andrés J
Advanced drug delivery reviews
Bone tissue has a remarkable ability to regenerate and heal itself. However, large bone defects and complex fractures still present a significant challenge to the medical community. Current treatments center on metal implants for structural and mechanical support and auto- or allo-grafts to substitute long bone defects. Metal implants are associated with several complications such as implant loosening and infections. Bone grafts suffer from donor site morbidity, reduced bioactivity, and risk of pathogen transmission. Surgical implants can be modified to provide vital biological cues, growth factors and cells in order to improve osseointegration and repair of bone defects. Here we review strategies and technologies to engineer metal surfaces to promote osseointegration with the host tissue. We also discuss strategies for modifying implants for cell adhesion and bone growth via integrin signaling and growth factor and cytokine delivery for bone defect repair.
10.1016/j.addr.2015.03.013
Twenty years of enamel matrix derivative: the past, the present and the future.
Miron Richard J,Sculean Anton,Cochran David L,Froum Stuart,Zucchelli Giovanni,Nemcovsky Carlos,Donos Nikos,Lyngstadaas Staale Petter,Deschner James,Dard Michel,Stavropoulos Andreas,Zhang Yufeng,Trombelli Leonardo,Kasaj Adrian,Shirakata Yoshinori,Cortellini Pierpaolo,Tonetti Maurizio,Rasperini Giulio,Jepsen Søren,Bosshardt Dieter D
Journal of clinical periodontology
BACGROUND:On June 5th, 2015 at Europerio 8, a group of leading experts were gathered to discuss what has now been 20 years of documented evidence supporting the clinical use of enamel matrix derivative (EMD). Original experiments led by Lars Hammarström demonstrated that enamel matrix proteins could serve as key regenerative proteins capable of promoting periodontal regeneration including new cementum, with functionally oriented inserting new periodontal ligament fibres, and new alveolar bone formation. This pioneering work and vision by Lars Hammarström has paved the way to an enormous amount of publications related to its biological basis and clinical use. Twenty years later, it is clear that all these studies have greatly contributed to our understanding of how biologics can act as mediators for periodontal regeneration and have provided additional clinical means to support tissue regeneration of the periodontium. AIMS:This review article aims to: (1) provide the biological background necessary to understand the rational for the use of EMD for periodontal regeneration, (2) present animal and human histological evidence of periodontal regeneration following EMD application, (3) provide clinically relevant indications for the use of EMD and (4) discuss future avenues of research including key early findings leading to the development of Osteogain, a new carrier system for EMD specifically developed with better protein adsorption to bone grafting materials.
10.1111/jcpe.12546
Tissue Engineered Constructs for Periodontal Regeneration: Current Status and Future Perspectives.
Vaquette Cedryck,Pilipchuk Sophia P,Bartold P Mark,Hutmacher Dietmar W,Giannobile William V,Ivanovski Saso
Advanced healthcare materials
The periodontium, consisting of gingiva, periodontal ligament, cementum, and alveolar bone, is a hierarchically organized tissue whose primary role is to provide physical and mechanical support to the teeth. Severe cases of periodontitis, an inflammatory condition initiated by an oral bacterial biofilm, can lead to significant destruction of soft and hard tissues of the periodontium and result in compromised dental function and aesthetics. Although current treatment approaches can limit the progression of the disease by controlling the inflammatory aspect, complete periodontal regeneration cannot be predictably achieved. Various tissue engineering approaches are investigated for their ability to control the critical temporo-spatial wound healing events that are essential for achieving periodontal regeneration. This paper reviews recent progress in the field of periodontal tissue engineering with an emphasis on advanced 3D multiphasic tissue engineering constructs (TECs) and provides a critical analysis of their regenerative potential and limitations. The review also elaborates on the future of periodontal tissue engineering, including scaffold customization for individual periodontal defects, TEC's functionalization strategies for imparting enhanced bioactivity, periodontal ligament fiber guidance, and the utilization of chair-side regenerative solutions that can facilitate clinical translation.
10.1002/adhm.201800457
Bi-layered Composite Scaffold for Repair of the Osteochondral Defects.
Advances in wound care
Osteochondral defect presents a big challenge for clinical treatment. This study aimed at constructing a bi-layered composite chitosan/chitosan-β-tricalcium phosphate (CS/CS-β-TCP) scaffold and at repairing the rat osteochondral defect. The bi-layered CS/CS-β-TCP scaffold was fabricated by lyophilization, and its microstructure was observed by a scanning electron microscope. Chondrocytes and bone marrow stem cells (BMSCs) were seeded into the CS layer and the CS-β-TCP layer, respectively. Viability and proliferation ability of the cells were observed under a confocal microscope. After subcutaneous implantation, the chondrogenic ability of the CS layer and osteogenic ability of the CS-β-TCP layer were evaluated by immunofluorescence. Then, the bi-layered scaffolds were implanted into the rat osteochondral defects and the harvested samples were macroscopically and histologically evaluated. The bi-layered CS/CS-β-TCP scaffold exhibited the distinctive microstructures for each layer. The seeded chondrocytes in the CS layer could maintain the chondrogenic lineage, whereas BMSCs in the CS-β-TCP layer could continually differentiate into the osteogenic lineage. Moreover, cells in both layers could maintain well viability and excellent proliferation ability. For the study, the newly formed tissues in the bi-layered scaffolds group were similar with the native osteochondral tissues, which comprised hyaline-like cartilage and subchondral bone, with better repair effects compared with those of the pure CS group and the blank control group. This is the first time that the bi-layered composite CS/CS-β-TCP scaffold has been fabricated and evaluated with respect to osteochondral defect repair. The bi-layered CS/CS-β-TCP scaffolds could facilitate osteochondral defect repair and might be the promising candidates for osteochondral tissue engineering.
10.1089/wound.2019.1140
Bone Tissue Engineering in the Treatment of Bone Defects.
Pharmaceuticals (Basel, Switzerland)
Bones play an important role in maintaining exercise and protecting organs. Bone defect, as a common orthopedic disease in clinics, can cause tremendous damage with long treatment cycles. Therefore, the treatment of bone defect remains as one of the main challenges in clinical practice. Today, with increased incidence of bone disease in the aging population, demand for bone repair material is high. At present, the method of clinical treatment for bone defects including non-invasive therapy and invasive therapy. Surgical treatment is the most effective way to treat bone defects, such as using bone grafts, Masquelet technique, Ilizarov technique etc. In recent years, the rapid development of tissue engineering technology provides a new treatment strategy for bone repair. This review paper introduces the current situation and challenges of clinical treatment of bone defect repair in detail. The advantages and disadvantages of bone tissue engineering scaffolds are comprehensively discussed from the aspect of material, preparation technology, and function of bone tissue engineering scaffolds. This paper also summarizes the 3D printing technology based on computer technology, aiming at designing personalized artificial scaffolds that can accurately fit bone defects.
10.3390/ph15070879
Functional hydrogels for the repair and regeneration of tissue defects.
Frontiers in bioengineering and biotechnology
Tissue defects can be accompanied by functional impairments that affect the health and quality of life of patients. Hydrogels are three-dimensional (3D) hydrophilic polymer networks that can be used as bionic functional tissues to fill or repair damaged tissue as a promising therapeutic strategy in the field of tissue engineering and regenerative medicine. This paper summarises and discusses four outstanding advantages of hydrogels and their applications and advances in the repair and regeneration of tissue defects. First, hydrogels have physicochemical properties similar to the extracellular matrix of natural tissues, providing a good microenvironment for cell proliferation, migration and differentiation. Second, hydrogels have excellent shape adaptation and tissue adhesion properties, allowing them to be applied to a wide range of irregularly shaped tissue defects and to adhere well to the defect for sustained and efficient repair function. Third, the hydrogel is an intelligent delivery system capable of releasing therapeutic agents on demand. Hydrogels are capable of delivering therapeutic reagents and releasing therapeutic substances with temporal and spatial precision depending on the site and state of the defect. Fourth, hydrogels are self-healing and can maintain their integrity when damaged. We then describe the application and research progress of functional hydrogels in the repair and regeneration of defects in bone, cartilage, skin, muscle and nerve tissues. Finally, we discuss the challenges faced by hydrogels in the field of tissue regeneration and provide an outlook on their future trends.
10.3389/fbioe.2023.1190171