logo logo
Defective Autophagy in Diabetic Retinopathy. Lopes de Faria Jacqueline M,Duarte Diego A,Montemurro Chiara,Papadimitriou Alexandros,Consonni Sílvio Roberto,Lopes de Faria José B Investigative ophthalmology & visual science PURPOSE:Müller cells (MCs) are a major source of VEGF in diabetic retinopathy (DR). Vascular endothelial growth factor is the main therapeutic target for treating DR. This study aimed to investigate whether autophagy is involved in MC response under high glucose (HG). METHODS:Rat retinal Müller cells (rMCs) were exposed to normal or high glucose in and out of presence of pharmacologic inhibitors and activators and small interfering RNA (siRNA) for p62/SQTSM1 for 24 hours. RESULTS:High glucose induces increase of early and late autophagic markers, accumulation of p62/SQTSM1 and endoplasmic reticulum (ER) stress response associated with apoptosis augmentation (P < 0.01). The inhibition of autophagy in HG leads to higher rMC apoptotic rate (P < 0.001). By silencing the p62/SQTSM1, ER stress is ameliorated (p<0.0001), preventing apoptosis. Retinal MCs in HG treated with rapamycin (mTOR inhibitor) show autophagy machinery activation and reestablishment of cargo degradation, protecting cells from apoptosis (P < 0.0001). Rapamycin improves lysosomal proteolytic activity by improving cathepsin L activity restoring autophagic cargo degradation, and preventing increased VEGF release (P < 0.0001). In experimental model of diabetes, Beclin-1 and p62/SQTSM-1 were found to be marked increased in retinas from diabetic Wystar Kyoto rats compared with control group (P < 0.003) with reduction of cathepsin L activity. CONCLUSIONS:High glucose upregulates autophagy but accumulates p62/SQTSM1 cargo due to lysosomal dysfunction, leading to massive VEGF release and cell death of rMCs. Lysosomal impairment and autophagic dysfunction are early events present in the pathogenesis of diabetic retinopathy (DR). This might be valuable for developing a novel therapeutic strategy to treat DR. 10.1167/iovs.16-19197
Salidroside Inhibits Ganglion Cell Apoptosis by Suppressing the Müller Cell Inflammatory Response in Diabetic Retinopathy. Current eye research PURPOSE:This study aimed to investigate the role of salidroside (SAL) in the cellular communication between Müller cells and retinal ganglion cells in diabetic mice. METHODS:The diabetes mellitus (DM) animal models were established by the intraperitoneal injection of streptozotocin and treatment with SAL gavage or by the injection of IL-22BP into the vitreous cavity. Immunohistochemistry was used to measure the expression of the glial fibrillary acidic protein in Müller cells. The expression of IL-22 and IL-22Rα1 in retinal tissues was assessed by immunofluorescence. Western blotting was used to measure the expression of inflammatory and apoptosis-related proteins. Hematoxylin-eosin staining, TUNEL staining, and flow cytometry were used to analyze the apoptosis of retinal ganglion cells. The effect of cellular interactions was explored by Transwell assays. RESULTS:Western blotting showed that glial fibrillary acidic protein, IL-22 protein expression was significantly upregulated in the DM animal models compared with the control mice. Immunofluorescence showed that IL-22 was highly expressed in Müller cells and IL-22Rα1 was expressed in ganglion cells in the retina of DM mice. Hematoxylin-eosin and TUNEL staining results showed an increase in the number of ganglion cells apoptotic in DM. However, SAL reversed these phenomena. Meanwhile, after coculture with Müller cells, Western blotting suggested that ganglion cells secreted p-STAT3, and c-caspase3 protein expression was increased. More interestingly, the treatment of IL-22BP and SAL inhibited the expression of the p-STAT3 and c-caspase3 proteins. Flow cytometry indicates that compared with the control group, the apoptosis rate of ganglion cells was increased in the high glucose group, while the apoptosis rate of cells in the recombinant IL-22 protein group was significantly increased, while the SAL inhibited ganglion cells apoptosis. CONCLUSION:SAL inhibits the apoptosis of retinal ganglion cells the IL-22/STAT3 pathway in Müller cells. 10.1080/02713683.2023.2204208
Panax notoginseng saponins alleviate diabetic retinopathy by inhibiting retinal inflammation: Association with the NF-κB signaling pathway. Journal of ethnopharmacology ETHNOPHARMACOLOGICAL RELEVANCE:Diabetic retinopathy (DR) is a neurovascular disease that causes blindness in adults and is the most serious and common complication of diabetes mellitus. Retinal inflammation is an early stage of DR, and it is believed to play a crucial role in the development of DR. Panax notoginseng saponins (PNS) are the major active constituent in the main root of P. notoginseng, and they exhibit various biological activities, including anti-inflammatory, antioxidant, neuroprotective, and immunomodulatory functions. However, the protective effects and underlying mechanisms of PNS against DR remain unclear. AIM OF THE STUDY:This study aimed to investigate the alleviation effects of PNS on DR and the mechanisms involved. Furthermore, it intended to explore the major components that exert efficacy in vivo. MATERIALS AND METHODS:Streptozotocin (STZ) was administered intraperitoneally to Sprague Dawley rats, and PNS was administered orally for 1 month after 2 months of STZ injection. The morphological structure of the retina and retinal acellular capillaries were assessed via hematoxylin and eosin (H&E) staining assay. The disruption of the blood-retinal barrier (BRB) was detected through Evans blue dye leakage assay, and retinal leukocyte adhesion was achieved via fluorescein isothiocyanate-coupled concanavalin A lectin labeling assay. Immunofluorescence staining and Western blot assays were conducted to detect the expression of tight junction proteins, adhesion molecules, and the ionized calcium-binding adapter molecule-1 (Iba-1) in the retina. Enzyme-linked immunosorbent assay was performed to detect the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β in serum. In addition, the protein expression levels of nuclear factor (NF)-κB p65, phosphorylated IκB kinase (p-IKK), phosphorylated NF-κB inhibitor (p-IκB), and phosphorylated NF-κB p65 (p-p65) were measured using Western blot assay. The ocular tissue distribution of PNS in normal and diabetic rats was determined through ultra-performance liquid chromatography-tandem mass spectrometry. The in vitro anti-inflammatory effects of PNS, notoginsenoside (NGR1), ginsenoside Rg1, Re, Rb1, and Rd (GRg1, GRe, GRb1, and GRd) were evaluated on human Müller (MIO-M1) cells. RESULTS:PNS increased the reduction in retinal inner nuclear layer thickness, reduced the increase in retinal acellular capillaries, and attenuated elevated BRB disruption by upregulating the decrease in protein expression of claudin-1 and occludin. Furthermore, PNS significantly abrogated microglial cell activation and reversed the increase in leukocyte adhesion by downregulating the increase in the protein expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. Moreover, PNS reduced the elevated levels of TNF-α, IL-6, and IL-1β in serum and inhibited the increased protein expression of p-IKK, p-IκB, and p-p65, and the nuclear translocation of p65. The tissue distribution results revealed that NGR1, GRg1, GRe, GRb1, and GRd were detected in the ocular tissue, while GRg1 and GRb1 were found at the highest levels compared with the other components. The cellular results showed that PNS, NGR1, GRg1, GRe, GRb1, and GRd suppressed the development of cellular inflammatory responses by inhibiting the activation of the NF-κB signaling pathway in MIO-M1 cells and that their anti-inflammatory effects were comparable. CONCLUSION:PNS suppressed retinal inflammation by inhibiting the activation of the NF-κB signaling pathway, alleviating DR. GRg1 and GRb1 may be the primary components that exert anti-inflammatory effects in vivo. 10.1016/j.jep.2023.117135
Liraglutide intervention improves high-glucose-induced reactive gliosis of Müller cells and ECM dysregulation. Molecular and cellular endocrinology Reactive gliosis of Müller cells plays an important role in the pathogenesis of diabetic retinopathy (DR). Liraglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist, has been shown to improve DR by inhibiting reactive gliosis. However, the mechanism of inhibition has yet to be elucidated. This study investigated the effects of liraglutide on Müller glia reactivity in the early stages of DR and the underlying mechanisms. Proteomics combined with bioinformatics analysis, HE staining, and immunofluorescence staining revealed ganglion cell loss, reactive gliosis of Müller cells, and extracellular matrix (ECM) imbalance in rats with early stages of DR. High glucose (HG) exposure up-regulated GFAP and TNF-α expression and down-regulated ITGB1 expression and FN1 content in extracellular fluid in rMC1 cells, thereby promoting reactive gliosis. GLP-1R knockdown and HG+DAPT inhibition experiments show that liraglutide balances ECM levels by inhibiting activation of the Notch1/Hes1 pathway and ameliorates high-glucose-induced Müller glia reactivity. Thus, the study provides new targets and ideas for improvement of DR in early stages. 10.1016/j.mce.2023.112013
MiR-423-5p promotes Müller cell activation via targeting NGF signaling in diabetic retinopathy. Life sciences AIMS:Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus and one of the major causes of visual impairment and blindness in industrialized countries. The early neuro-glial perturbations, especially retinal Müller cells (rMC) activation, intimately associated with the vascular alterations. MicroRNAs (miRNAs) have been reported to play critical roles in the progression of DR. Here, we aimed to further explore the role and underlying mechanism of miR-423-5p in Müller cell activation in streptozotocin (STZ)-induced diabetic mice and oxygen-induced retinopathy (OIR) model. MATERIALS AND METHODS:Retinal histology, optical coherence tomography (OCT) and biochemical markers were assessed. KEY FINDINGS:Our data revealed that the expression of miR-423-5p was significantly increased under high-glucose environment. We also demonstrated that miR-423-5p overexpression markedly accelerated retinal vascular leakage, leukocytosis, and rMC activation. This response was ameliorated in animals pre-treated with the inhibition of miR-423-5p. Specifically, miR-423-5p bound to the nerve growth factor (NGF) 3' UTR region to induce its silencing. NGF inhibition significantly promoted retinal microvascular dysfunction. SIGNIFICANCE:These findings demonstrate that miR-423-5p is a critical miRNA that promotes microvascular dysfunction in DR. 10.1016/j.lfs.2023.122217
IL-33 regulates Müller cell-mediated retinal inflammation and neurodegeneration in diabetic retinopathy. Disease models & mechanisms Diabetic retinopathy (DR) is characterised by dysfunction of the retinal neurovascular unit, leading to visual impairment and blindness. Müller cells are key components of the retinal neurovascular unit and diabetes has a detrimental impact on these glial cells, triggering progressive neurovascular pathology of DR. Amongst many factors expressed by Müller cells, interleukin-33 (IL-33) has an established immunomodulatory role, and we investigated the role of endogenous IL-33 in DR. The expression of IL-33 in Müller cells increased during diabetes. Wild-type and Il33-/- mice developed equivalent levels of hyperglycaemia and weight loss following streptozotocin-induced diabetes. Electroretinogram a- and b-wave amplitudes, neuroretina thickness, and the numbers of cone photoreceptors and ganglion cells were significantly reduced in Il33-/- diabetic mice compared with those in wild-type counterparts. The Il33-/- diabetic retina also exhibited microglial activation, sustained gliosis, and upregulation of pro-inflammatory cytokines and neurotrophins. Primary Müller cells from Il33-/- mice expressed significantly lower levels of neurotransmitter-related genes (Glul and Slc1a3) and neurotrophin genes (Cntf, Lif, Igf1 and Ngf) under high-glucose conditions. Our results suggest that deletion of IL-33 promotes inflammation and neurodegeneration in DR, and that this cytokine is critical for regulation of glutamate metabolism, neurotransmitter recycling and neurotrophin secretion by Müller cells. 10.1242/dmm.050174
Pathogenesis Study Based on High-Throughput Single-Cell Sequencing Analysis Reveals Novel Transcriptional Landscape and Heterogeneity of Retinal Cells in Type 2 Diabetic Mice. Niu Tian,Fang Junwei,Shi Xin,Zhao Mengya,Xing Xindan,Wang Yihan,Zhu Shaopin,Liu Kun Diabetes Diabetic retinopathy (DR) is the leading cause of acquired blindness in middle-aged people. The complex pathology of DR is difficult to dissect, given the convoluted cytoarchitecture of the retina. Here, we performed single-cell RNA sequencing (scRNA-seq) of retina from a model of type 2 diabetes, induced in leptin receptor-deficient () and control mice, with the aim of elucidating the factors mediating the pathogenesis of DR. We identified 11 cell types and determined cell-type-specific expression of DR-associated loci via genome-wide association study (GWAS)-based enrichment analysis. DR also impacted cell-type-specific genes and altered cell-cell communication. Based on the scRNA-seq results, retinaldehyde-binding protein 1 (RLBP1) was investigated as a promising therapeutic target for DR. Retinal RLBP1 expression was decreased in diabetes, and its overexpression in Müller glia mitigated DR-associated neurovascular degeneration. These data provide a detailed analysis of the retina under diabetic and normal conditions, revealing new insights into pathogenic factors that may be targeted to treat DR and related dysfunctions. 10.2337/db20-0839
Targeting long noncoding RNA-AQP4-AS1 for the treatment of retinal neurovascular dysfunction in diabetes mellitus. EBioMedicine BACKGROUND:Diabetic retinopathy (DR) is a leading cause of blindness in the working-age population, which is characterized by retinal neurodegeneration and vascular dysfunction. Long non-coding RNAs (LncRNAs) have emerged as critical regulators in several biological processes and disease progression. Here we investigated the role of lncRNA AQP4-AS1 in retinal neurovascular dysfunction induced by diabetes. METHODS:Quantitative RT-PCR was used to detect the AQP4-AS1 expression pattern upon diabetes mellitus-related stresses. Visual electrophysiology examination, TUNEL staining, Evans blue staining, retinal trypsin digestion and immunofluorescent staining were conducted to detect the role of AQP4-AS1 in retinal neurovascular dysfunction in vivo. MTT assays, TUNEL staining, PI/Calcein-AM staining, EdU incorporation assay transwell assay and tube formation were conducted to detect the role of AQP4-AS1 in retinal cells function in vitro. qRT-PCR, western blot and in vivo studies were conducted to reveal the mechanism of AQP4-AS1-mediated retinal neurovascular dysfunction. FINDINGS:AQP4-AS1 was significantly increased in the clinical samples of diabetic retinopathy patients, high glucose-treated Müller cells, and diabetic retinas of a murine model. AQP4-AS1 silencing in vivo alleviated retinal neurodegeneration and vascular dysfunction as shown by improved retinal capillary degeneration, decreased reactive gliosis, and reduced RGC loss. AQP4-AS1 directly regulated Müller cell function and indirectly affected endothelial cell and RGC function in vitro. Mechanistically, AQP4-AS1 regulated retinal neurovascular dysfunction through affecting AQP4 levels. INTERPRETATION:This study reveals AQP4-AS1 is involved in retinal neurovascular dysfunction and expected to become a promising target for the treatment of neurovascular dysfunction in DR. FUNDING:This work was generously supported by the grants from the National Natural Science Foundation of China (Grant No. 81800858, 82070983, 81870679 and 81970823), grants from the Medical Science and Technology Development Project Fund of Nanjing (Grant No ZKX17053 and YKK19158), grants from Innovation Team Project Fund of Jiangsu Province (No. CXTDB2017010), and the Science and Technology Development Plan Project Fund of Nanjing (Grant No 201716007, 201805007 and 201803058). 10.1016/j.ebiom.2022.103857
TGR5 supresses cGAS/STING pathway by inhibiting GRP75-mediated endoplasmic reticulum-mitochondrial coupling in diabetic retinopathy. Cell death & disease Diabetic retinopathy (DR) is a serious and relatively under-recognized complication of diabetes. Müller glial cells extend throughout the retina and play vital roles in maintaining retinal homeostasis. Previous studies have demonstrated that TGR5, a member of the bile acid-activated GPCR family, could ameliorate DR. However, the role of TGR5 in regulating Müller cell function and the underlying mechanism remains to be ascertained. To address this, high glucose (HG)-treated human Müller cells and streptozotocin-treated Sprague-Dawley rats were used in the study. The IP3R1-GRP75-VDAC1 axis and mitochondrial function were assessed after TGR5 ablation or agonism. Cytosolic mitochondrial DNA (mtDNA)-mediated cGAS-STING activation was performed. The key markers of retinal vascular leakage, apoptosis, and inflammation were examined. We found that mitochondrial Ca overload and mitochondrial dysfunction were alleviated by TGR5 agonist. Mechanically, TGR5 blocked the IP3R1-GRP75-VDAC1 axis mediated Ca efflux from the endoplasmic reticulum into mitochondria under diabetic condition. Mitochondrial Ca overload led to the opening of the mitochondrial permeability transition pore and the release of mitochondrial DNA (mtDNA) into the cytosol. Cytoplasmic mtDNA bound to cGAS and upregulated 2'3' cyclic GMP-AMP. Consequently, STING-mediated inflammatory responses were activated. TGR5 agonist prevented retinal injury, whereas knockdown of TGR5 exacerbated retinal damage in DR rats, which was rescued by the STING inhibitor. Based on the above results, we propose that TGR5 might be a novel therapeutic target for the treatment of DR. 10.1038/s41419-023-06111-5
Hyperglycemia-regulated tRNA-derived fragment tRF-3001a propels neurovascular dysfunction in diabetic mice. Cell reports. Medicine Neurovascular dysfunction is a preclinical manifestation of diabetic complications, including diabetic retinopathy (DR). Herein, we report that a transfer RNA-derived RNA fragment, tRF-3001a, is significantly upregulated under diabetic conditions. tRF-3001a downregulation inhibits Müller cell activation, suppresses endothelial angiogenic effects, and protects against high-glucose-induced retinal ganglion cell injury in vitro. Furthermore, tRF-3001a downregulation alleviates retinal vascular dysfunction, inhibits retinal reactive gliosis, facilitates retinal ganglion cell survival, and preserves visual function and visually guided behaviors in STZ-induced diabetic mice and db/db diabetic mice. Mechanistically, tRF-3001a regulates neurovascular dysfunction in a microRNA-like mechanism by targeting GSK3B. Clinically, tRF-3001a is upregulated in aqueous humor (AH) samples of DR patients. tRF-3001a downregulation inhibits DR-induced human retinal vascular endothelial cell and Müller cell dysfunction in vitro and DR-induced retinal neurovascular dysfunction in C57BL/6J mice. Thus, targeting tRF-3001a-mediated signaling is a promising strategy for the concurrent treatment of vasculopathy and neuropathy in diabetes mellitus. 10.1016/j.xcrm.2023.101209
Glial cell alterations in diabetes-induced neurodegeneration. Cellular and molecular life sciences : CMLS Type 2 diabetes mellitus is a global epidemic that due to its increasing prevalence worldwide will likely become the most common debilitating health condition. Even if diabetes is primarily a metabolic disorder, it is now well established that key aspects of the pathogenesis of diabetes are associated with nervous system alterations, including deleterious chronic inflammation of neural tissues, referred here as neuroinflammation, along with different detrimental glial cell responses to stress conditions and neurodegenerative features. Moreover, diabetes resembles accelerated aging, further increasing the risk of developing age-linked neurodegenerative disorders. As such, the most common and disabling diabetic comorbidities, namely diabetic retinopathy, peripheral neuropathy, and cognitive decline, are intimately associated with neurodegeneration. As described in aging and other neurological disorders, glial cell alterations such as microglial, astrocyte, and Müller cell increased reactivity and dysfunctionality, myelin loss and Schwann cell alterations have been broadly described in diabetes in both human and animal models, where they are key contributors to chronic noxious inflammation of neural tissues within the PNS and CNS. In this review, we aim to describe in-depth the common and unique aspects underlying glial cell changes observed across the three main diabetic complications, with the goal of uncovering shared glial cells alterations and common pathological mechanisms that will enable the discovery of potential targets to limit neuroinflammation and prevent neurodegeneration in all three diabetic complications. Diabetes and its complications are already a public health concern due to its rapidly increasing incidence, and thus its health and economic impact. Hence, understanding the key role that glial cells play in the pathogenesis underlying peripheral neuropathy, retinopathy, and cognitive decline in diabetes will provide us with novel therapeutic approaches to tackle diabetic-associated neurodegeneration. 10.1007/s00018-023-05024-y
The Role of Müller Cells in Diabetic Macular Edema. Investigative ophthalmology & visual science Diabetic macular edema (DME) is a common complication of diabetic retinopathy and is the leading cause of vision loss in diabetic patients. Various factors, such as metabolic disorders and inflammation caused by hyperglycemia, are involved in the occurrence and development of DME, but the specific mechanism is still unclear. Müller cells are a type of macroglial cell unique to the fundus, distributed throughout the retina, and they play a unique role in retinal homeostasis. This article reviews the role of Müller cells in the pathological process of DME and the research progress in the treatment of DME by targeting Müller cells through gene therapy. 10.1167/iovs.64.10.8