logo logo
Research on the Impact of Deep Eutectic Solvent and Hot-Water Extraction Methods on the Structure of Polysaccharides. Molecules (Basel, Switzerland) Deep eutectic solvent (DES) and hot-water extraction (HWE) methods were utilized to extract polysaccharides from , referred to as DPsP and WPsP, respectively. The extracted polysaccharides were purified using the Superdex-200 dextran gel purification system, resulting in three components for each type of polysaccharide. The structures of these components were characterized. The molecular weight analysis revealed that DPsP components had slightly larger molecular weights compared with WPsP, with DPsP-A showing a slightly higher dispersity index and broader molecular weight distribution. The main monosaccharide components of both DPsP and WPsP were mannose and glucose, while DPsP exhibited a slightly greater variety of sugar components compared with WPsP. FTIR analysis demonstrated characteristic polysaccharide absorption peaks in all six PSP components, with a predominance of acidic pyranose sugars. NMR analysis revealed the presence of pyranose sugars, including rhamnose and sugar aldehyde acids, in both DPsP-B and WPsP-A. DPsP-B primarily exhibited β-type glycosidic linkages, while WPsP-A predominantly displayed α-type glycosidic linkages, with a smaller fraction being β-type. These findings indicated differences in monosaccharide composition and structure between PSPs extracted using different methods. Overall, this study provided experimental evidence for future research on the structure-function relationship of PSPs. 10.3390/molecules28196981
A New Method of Extracting Polysaccharide with Antioxidant Function: Ultrasound-Assisted Extraction-Deep Eutectic Solvents Method. Foods (Basel, Switzerland) Polysaccharide (PsP) with antioxidant function is the main active component of (P.sibiricum). The currently poor extraction yield and extraction methods of PsP cannot meet the application of that in food industrial production. In this research, an ultrasound-assisted extraction-deep eutectic solvents (UAE-DESs) method, which has never been used in the PsP industry, was first used to extract PsP. The extraction conditions were optimized by the response surface method (RSM). Both the extraction yield and antioxidant function were simultaneously considered during the optimization process. The indicators of PsP's level and antioxidant activity in vitro were used to present the extraction yield of the UAE-DESs method, the purity, and the antioxidant effect of PsP. Under the optimal conditions, which included a liquid-solid ratio of 26:1 (mL:g), extraction temperature of 80 °C, ultrasonic time of 51 min, and ultrasonic power of 82 W, the PsP extraction yield could reach (43.61 ± 0.09)%, which was obviously higher than single DESs (33.81%) and UAE (5.83%), respectively, and the PsP appeared favorably antioxidant function. This research proposed an efficient extraction method for PsP, filled the basic research gap, and further improved the development of PsP as a dietary supplement with antioxidant function in the food industry. 10.3390/foods12183438