logo logo
HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis. Jiao Wanju,Chen Yajun,Song Huajie,Li Dan,Mei Hong,Yang Feng,Fang Erhu,Wang Xiaojing,Huang Kai,Zheng Liduan,Tong Qiangsong Oncogene Recent studies reveal the emerging functions of enhancer RNAs (eRNAs) in gene expression. However, the roles of eRNAs in regulating the expression of heparanase (HPSE), an established endo-β-D-glucuronidase essential for cancer invasion and metastasis, still remain elusive. Herein, through comprehensive analysis of publically available FANTOM5 expression atlas and chromatin interaction dataset, we identified a super enhancer and its derived eRNA facilitating the HPSE expression (HPSE eRNA) in cancers. Gain-of-function and loss-of-function experiments indicated that HPSE eRNA facilitated the in vitro and in vivo tumorigenesis and aggressiveness of cancer cells. Mechanistically, as a p300-regulated nuclear noncoding RNA, HPSE eRNA bond to heterogeneous nuclear ribonucleoprotein U (hnRNPU) to facilitate its interaction with p300 and their enrichment on super enhancer, resulting in chromatin looping between super enhancer and HPSE promoter, p300-mediated transactivation of transcription factor early growth response 1 (EGR1), and subsequent elevation of HPSE expression. In addition, rescue studies in HPSE overexpressing or silencing cancer cells indicated that HPSE eRNA exerted oncogenic properties via driving HPSE expression. In clinical cancer tissues, HPSE eRNA was highly expressed and positively correlated with HPSE levels, and served as an independent prognostic factor for poor outcome of cancer patients. Therefore, these findings indicate that as a novel noncoding RNA, HPSE eRNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis. 10.1038/s41388-018-0128-0
Identification and characterization of transcribed enhancers during cerebellar development through enhancer RNA analysis. BMC genomics BACKGROUND:The development of the brain requires precise coordination of molecular processes across many cell-types. Underpinning these events are gene expression programs which require intricate regulation by non-coding regulatory sequences known as enhancers. In the context of the developing brain, transcribed enhancers (TEs) regulate temporally-specific expression of genes critical for cell identity and differentiation. Transcription of non-coding RNAs at active enhancer sequences, known as enhancer RNAs (eRNAs), is tightly associated with enhancer activity and has been correlated with target gene expression. TEs have been characterized in a multitude of developing tissues, however their regulatory role has yet to be described in the context of embryonic and early postnatal brain development. In this study, eRNA transcription was analyzed to identify TEs active during cerebellar development, as a proxy for the developing brain. Cap Analysis of Gene Expression followed by sequencing (CAGE-seq) was conducted at 12 stages throughout embryonic and early postnatal cerebellar development. RESULTS:Temporal analysis of eRNA transcription identified clusters of TEs that peak in activity during either embryonic or postnatal times, highlighting their importance for temporally specific developmental events. Functional analysis of putative target genes identified molecular mechanisms under TE regulation revealing that TEs regulate genes involved in biological processes specific to neurons. We validate enhancer activity using in situ hybridization of eRNA expression from TEs predicted to regulate Nfib, a gene critical for cerebellar granule cell differentiation. CONCLUSIONS:The results of this analysis provide a valuable dataset for the identification of cerebellar enhancers and provide insight into the molecular mechanisms critical for brain development under TE regulation. This dataset is shared with the community through an online resource ( https://goldowitzlab.shinyapps.io/trans-enh-app/ ). 10.1186/s12864-023-09368-4
An enhancer-AAV approach selectively targeting dentate granule cells of the mouse hippocampus. Cell reports methods The mammalian brain contains a diverse array of cell types, including dozens of neuronal subtypes with distinct anatomical and functional characteristics. The brain leverages these neuron-type specializations to perform diverse circuit operations and thus execute different behaviors properly. Through the use of Cre lines, access to specific neuron types has improved over past decades. Despite their extraordinary utility, development and cross-breeding of Cre lines is time consuming and expensive, presenting a significant barrier to entry for investigators. Furthermore, cell-based therapeutics developed in Cre mice are not clinically translatable. Recently, several adeno-associated virus (AAV) vectors utilizing neuron-type-specific regulatory transcriptional sequences (enhancer-AAVs) were developed that overcome these limitations. Using a publicly available RNA sequencing (RNA-seq) dataset, we evaluated the potential of several candidate enhancers for neuron-type-specific targeting in the hippocampus. Here, we demonstrate that a previously identified enhancer-AAV selectively targets dentate granule cells over other excitatory neuron types in the hippocampus of wild-type adult mice. 10.1016/j.crmeth.2023.100684
Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Frank Christopher L,Liu Fang,Wijayatunge Ranjula,Song Lingyun,Biegler Matthew T,Yang Marty G,Vockley Christopher M,Safi Alexias,Gersbach Charles A,Crawford Gregory E,West Anne E Nature neuroscience To identify chromatin mechanisms of neuronal differentiation, we characterized chromatin accessibility and gene expression in cerebellar granule neurons (CGNs) of the developing mouse. We used DNase-seq to map accessibility of cis-regulatory elements and RNA-seq to profile transcript abundance across postnatal stages of neuronal differentiation in vivo and in culture. We observed thousands of chromatin accessibility changes as CGNs differentiated, and verified, using H3K27ac ChIP-seq, reporter gene assays and CRISPR-mediated activation, that many of these regions function as neuronal enhancers. Motif discovery in differentially accessible chromatin regions suggested a previously unknown role for the Zic family of transcription factors in CGN maturation. We confirmed the association of Zic with these elements by ChIP-seq and found, using knockdown, that Zic1 and Zic2 are required for coordinating mature neuronal gene expression patterns. Together, our data reveal chromatin dynamics at thousands of gene regulatory elements that facilitate the gene expression patterns necessary for neuronal differentiation and function. 10.1038/nn.3995
Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. Bolger Timothy A,Yao Tso-Pang The Journal of neuroscience : the official journal of the Society for Neuroscience Histone deacetylase 4 (HDAC4) undergoes signal-dependent shuttling between the cytoplasm and nucleus, which is regulated in part by calcium/calmodulin-dependent kinase (CaMK)-mediated phosphorylation. Here, we report that HDAC4 intracellular trafficking is important in regulating neuronal cell death. HDAC4 is normally localized to the cytoplasm in brain tissue and cultured cerebellar granule neurons (CGNs). However, in response to low-potassium or excitotoxic glutamate conditions that induce neuronal cell death, HDAC4 rapidly translocates into the nucleus of cultured CGNs. Treatment with the neuronal survival factor BDNF suppresses HDAC4 nuclear translocation, whereas a proapoptotic CaMK inhibitor stimulates HDAC4 nuclear accumulation. Moreover, ectopic expression of nuclear-localized HDAC4 promotes neuronal apoptosis and represses the transcriptional activities of myocyte enhancer factor 2 and cAMP response element-binding protein, survival factors in neurons. In contrast, inactivation of HDAC4 by small interfering RNA or HDAC inhibitors suppresses neuronal cell death. Finally, an increase of nuclear HDAC4 in granule neurons is also observed in weaver mice, which harbor a mutation that promotes CGN apoptosis. Our data identify HDAC4 and its intracellular trafficking as key effectors of multiple pathways that regulate neuronal cell death. 10.1523/JNEUROSCI.1826-05.2005
Identification of MMP-2 as a novel enhancer of cerebellar granule cell proliferation. Verslegers Mieke,Van Hove Inge,Buyens Tom,Dekeyster Eline,Knevels Ellen,Moons Lieve Molecular and cellular neurosciences During the first postnatal days in the mouse, granule cells (GCs) undergo massive proliferation, which then gradually decreases. Matrix metalloproteinase-2 (MMP-2), a Zn(2+)-dependent proteolytic enzyme, is involved in a wide variety of pathological and physiological pathways. Evidence for a role of this proteinase in cell proliferation is emerging, reporting its involvement in pathological proliferation, as well as during neurogenesis and developmental proliferation of non-CNS tissues. In this study, MMP-2 protein expression was observed within the early postnatal cerebellar cortex, predominantly in Purkinje cells and within the GC proliferative zone, i.e. the superficial external granular layer (EGL). Consistently, the spatiotemporal MMP-2 mRNA and protein profiles highly correlated with the peak of GC precursor (GCP) proliferation and detailed morphometric analyses of MMP-2 deficient cerebella revealed a thinner EGL due to a decreased GCP proliferation. BrdU cumulative experiments, performed to measure the length of different cell cycle phases, further disclosed a transiently prolonged S-phase in MMP-2 deficient GCPs during early cerebellar development. In consequence, MMP-2 deficient animals displayed a transient delay in GC migration towards the IGL. In conclusion, our findings provide important evidence for a role for MMP-2 in neuronal proliferation and cell cycle kinetics in the developing CNS. 10.1016/j.mcn.2013.10.001