Research on fertilization decision method for rice tillering stage based on the coupling of UAV hyperspectral remote sensing and WOFOST.
Frontiers in plant science
Introduction:The use of chemical fertilizers in rice field management directly affects rice yield. Traditional rice cultivation often relies on the experience of farmers to develop fertilization plans, which cannot be adjusted according to the fertilizer requirements of rice. At present, agricultural drones are widely used for early monitoring of rice, but due to their lack of rationality, they cannot directly guide fertilization. How to accurately apply nitrogen fertilizer during the tillering stage to stabilize rice yield is an urgent problem to be solved in the current large-scale rice production process. Methods:WOFOST is a highly mechanistic crop growth model that can effectively simulate the effects of fertilization on rice growth and development. However, due to its lack of spatial heterogeneity, its ability to simulate crop growth at the field level is weak. This study is based on UAV remote sensing to obtain hyperspectral data of rice canopy and assimilation with the WOFOST crop growth model, to study the decision-making method of nitrogen fertilizer application during the rice tillering stage. Extracting hyperspectral features of rice canopy using Continuous Projection Algorithm and constructing a hyperspectral inversion model for rice biomass based on Extreme Learning Machine. By using two data assimilation methods, Ensemble Kalman Filter and Four-Dimensional Variational, the inverted biomass of the rice biomass hyperspectral inversion model and the localized WOFOST crop growth model were assimilated, and the simulation results of the WOFOST model were corrected. With the average yield as the goal, use the WOFOST model to formulate fertilization decisions and create a fertilization prescription map to achieve precise fertilization during the tillering stage of rice. Results:The research results indicate that the training set and RMSE of the rice biomass hyperspectral inversion model are 0.953 and 0.076, respectively, while the testing set and RMSE are 0.914 and 0.110, respectively. When obtaining the same yield, the fertilization strategy based on the ENKF assimilation method applied less fertilizer, reducing 5.9% compared to the standard fertilization scheme. Discussion:This study enhances the rationality of unmanned aerial vehicle remote sensing machines through data assimilation, providing a new theoretical basis for the decision-making of rice fertilization.
10.3389/fpls.2024.1405239
From data to harvest: Leveraging ensemble machine learning for enhanced crop yield predictions across Canada amidst climate change.
The Science of the total environment
Accurate crop yield predictions are crucial for farmers and policymakers. Despite the widespread use of ensemble machine learning (ML) models in computer science, their application in crop yield prediction remains relatively underexplored. This study, conducted in Canada, aims to assess the potential of five distinct ensemble ML models-Adaptive Boosting (AdaBoost), Gradient Boosting Machine (GBM), XGBoost, LightGBM, and Random Forest (RF)-in predicting crop yields chosen for their ability to manage complex datasets and their strong performance potential. The study integrated various factors, including climate variables, satellite-derived vegetation indices, soil characteristics, and honeybee census data. Data preparation comprised two main steps: first, climate variables were interpolated and averaged for croplands in ArcGIS Pro, along with averaging vegetation indices and soil characteristics. Honeybee census data was also incorporated. Second, the data was organized in Python to create a structured format for models' input. The models' accuracy was assessed using Root Mean Squared Error (RMSE), R-squared, and Mean Absolute Error (MAE). XGBoost emerged as the most accurate model, with the lowest MAE (68.70 for canola and 39.47 for soybeans), lowest RMSE (119.48 for canola and 102.39 for soybeans), and highest R-squared values (0.95 for canola and 0.96 for soybeans) on the test dataset. The study also assessed crop yields under various climate change scenarios, finding minimal variations across the scenarios, but significant negative impacts on canola and soybean yields across Canada. Honeybee colonies were identified as the most influential factor on crop yields, contributing 52.34 % to canola and 57.18 % to soybean yields. This research provides detailed crop yield maps of canola and soybeans at the Census Consolidated Subdivisions (CCS) level across Canada's agricultural landscape, offering valuable forecasts for localized decision-making. Additionally, it offers a proactive strategy for climate change preparedness, assisting farmers and stakeholders optimise resource allocation and manage risks effectively.
10.1016/j.scitotenv.2024.175764
Precision estimation of winter wheat crop height and above-ground biomass using unmanned aerial vehicle imagery and oblique photoghraphy point cloud data.
Frontiers in plant science
Introduction:Crop height and above-ground biomass (AGB) serve as crucial indicators for monitoring crop growth and estimating grain yield. Timely and accurate acquisition of wheat crop height and AGB data is paramount for guiding agricultural production. However, traditional data acquisition methods suffer from drawbacks such as time-consuming, laborious and destructive sampling. Methods:The current approach to estimating AGB using unmanned aerial vehicles (UAVs) remote sensing relies solely on spectral data, resulting in low accuracy in estimation. This method fails to address the ill-posed inverse problem of mapping from two-dimensional to three-dimensional and issues related to spectral saturation. To overcome these challenges, RGB and multispectral sensors mounted on UAVs were employed to acquire spectral image data. The five-directional oblique photography technique was utilized to construct the three-dimensional point cloud for extracting crop height. Results and Discussion:This study comparatively analyzed the potential of the mean method and the Accumulated Incremental Height (AIH) method in crop height extraction. Utilizing Vegetation Indices (VIs), AIH and their feature combinations, models including Random Forest Regression (RFR), eXtreme Gradient Boosting (XGBoost), Gradient Boosting Regression Trees (GBRT), Support Vector Regression (SVR) and Ridge Regression (RR) were constructed to estimate winter wheat AGB. The research results indicated that the AIH method performed well in crop height extraction, with minimal differences between 95% AIH and measured crop height values were observed across various growth stages of wheat, yielding R ranging from 0.768 to 0.784. Compared to individual features, the combination of multiple features significantly improved the model's estimate accuracy. The incorporation of AIH features helps alleviate the effects of spectral saturation. Coupling VIs with AIH features, the model's R increases from 0.694-0.885 with only VIs features to 0.728-0.925. In comparing the performance of five machine learning algorithms, it was discovered that models constructed based on decision trees were superior to other machine learning algorithms. Among them, the RFR algorithm performed optimally, with R ranging from 0.9 to 0.93. Conclusion:In conclusion, leveraging multi-source remote sensing data from UAVs with machine learning algorithms overcomes the limitations of traditional crop monitoring methods, offering a technological reference for precision agriculture management and decision-making.
10.3389/fpls.2024.1437350
Predicting rice phenology across China by integrating crop phenology model and machine learning.
The Science of the total environment
This study explores the integration of crop phenology models and machine learning approaches for predicting rice phenology across China, to gain a deeper understanding of rice phenology prediction. Multiple approaches were used to predict heading and maturity dates at 337 locations across the main rice growing regions of China from 1981 to 2020, including crop phenology model, machine learning and hybrid model that integrate both approaches. Furthermore, an interpretable machine learning (IML) using SHapley Additive exPlanation (SHAP) was employed to elucidate influence of climatic and varietal factors on uncertainty in crop phenology model predictions. Overall, the hybrid model demonstrated a high accuracy in predicting rice phenology, followed by machine learning and crop phenology models. The best hybrid model, based on a serial structure and the eXtreme Gradient Boosting (XGBoost) algorithm, achieved a root mean square error (RMSE) of 4.65 and 5.72 days and coefficient of determination (R) values of 0.93 and 0.9 for heading and maturity predictions, respectively. SHAP analysis revealed temperature to be the most influential climate variable affecting phenology predictions, particularly under extreme temperature conditions, while rainfall and solar radiation were found to be less influential. The analysis also highlighted the variable importance of climate across different phenological stages, rice cultivation patterns, and geographic regions, underscoring the notable regionality. The study proposed that a hybrid model using an IML approach would not only improve the accuracy of prediction but also offer a robust framework for leveraging data-driven in crop modeling, providing a valuable tool for refining and advancing the modeling process in rice.
10.1016/j.scitotenv.2024.175585