Characterizing Relevant MicroRNA Editing Sites in Parkinson's Disease.
Cells
MicroRNAs (miRNAs) are extensively edited in human brains. However, the functional relevance of the miRNA editome is largely unknown in Parkinson's disease (PD). By analyzing small RNA sequencing profiles of brain tissues of 43 PD patients and 88 normal controls, we found that the editing levels of five A-to-I and two C-to-U editing sites are significantly correlated with the ages of normal controls, which is disrupted in PD patients. We totally identified 362 miRNA editing sites with significantly different editing levels in prefrontal cortices of PD patients (PD-PC) compared to results of normal controls. We experimentally validated that A-to-I edited miR-497-5p, with significantly higher expression levels in PD-PC compared to normal controls, directly represses OPA1 and VAPB. Furthermore, overexpression of A-to-I edited miR-497-5p downregulates OPA1 and VAPB in two cell lines, and inhibits proliferation of glioma cells. These results suggest that the hyperediting of miR-497-5p in PD contributes to enhanced progressive neurodegeneration of PD patients. Our results provide new insights into the mechanistic understanding, novel diagnostics, and therapeutic clues of PD.
10.3390/cells12010075
A Comprehensive Study of miRNAs in Parkinson's Disease: Diagnostics and Therapeutic Approaches.
CNS & neurological disorders drug targets
Parkinson's disease (PD) is the second most debilitating neurodegenerative movement disorder. It is characterized by the presence of fibrillar alpha-synuclein amassed in the neurons, known as Lewy bodies. Certain cellular and molecular events are involved, leading to the degeneration of dopaminergic neurons. However, the origin and implication of such events are still uncertain. Nevertheless, the role of microRNAs (miRNAs) as important biomarkers and therapeutic molecules is unquestionable. The most challenging task by far in PD treatment has been its late diagnosis followed by therapeutics. miRNAs are an emerging hope to meet the need of early diagnosis, thereby promising an improved movement symptom and prolonged life of the patients. The continuous efforts in discovering the role of miRNAs could be made possible by the utilisation of various animal models of PD. These models help us understand insights into the mechanism of the disease. Moreover, miRNAs have been surfaced as therapeutically important molecules with distinct delivery systems enhancing their success rate. This review aims at providing an outline of different miRNAs implicated in either PD-associated gene regulation or involved in therapeutics.
10.2174/1871527321666220111152756
[Research Progress of microRNA-7/124/155 in Parkinson's Disease].
Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae
Parkinson's disease(PD)is the second most common neurodegenerative disease after Alzheimer's disease,with high morbidity and high disability rate.Since the early symptoms of PD are not typical and often similar to those of normal aging or other diseases.It is easy to missed diagnosis and misdiagnosis,which seriously affects the diagnosis and treatment of this disease and aggravetes the burden on the patients' life.MicroRNAs(miRNA)are a class of endogenous non-coding RNAs that are involved in post-transcriptional regulation by binding to target messenger RNAs(mRNA).They are highly conserved,short,easy to obtain,and can stably exist in peripheral body fluids.They have been used as biomarkers for a variety of diseases.Recent studies have demonstrated that miRNA play an important role in the development of PD.This paper reviews the recent research progress of miR-7/124/155,three mature miRNA in PD,aiming to provide reference for clarifying the pathogenesis and guiding the diagnosis and treatment of PD.
10.3881/j.issn.1000-503X.15244
miRNA expression is highly sensitive to a drug therapy in Parkinson's disease.
Alieva Anelya Kh,Filatova Elena V,Karabanov Aleksey V,Illarioshkin Sergey N,Limborska Svetlana A,Shadrina Maria I,Slominsky Petr A
Parkinsonism & related disorders
BACKGROUND:miRNAs may play a role in the pathogenesis of Parkinson's disease. It is necessary to continue the search for new miRNAs that may affect the development of neurodegeneration in Parkinson's disease. METHODS:20 untreated patients with Parkinson's disease and 18 treated patients with Parkinson's disease (Hoehn and Yahr scores 1-2) were studied. An analysis of the levels of 11 miRNAs in the peripheral blood lymphocytes of patients was carried out using reverse transcription followed by real-time PCR. RESULTS:The levels of miR-7, miR-9-3p, miR-9-5p, miR-129, and miR-132 were increased by more than three times in treated patients with Parkinson's disease compared with those of the controls. CONCLUSIONS:It is probable that miRNAs are very sensitive to drug therapy and that the effects of therapy observed may be associated with changes in the levels of these miRNAs and their target genes in patients with Parkinson's disease.
10.1016/j.parkreldis.2014.10.018
miRNA in Parkinson's disease: From pathogenesis to theranostic approaches.
Journal of cellular physiology
Parkinson's disease (PD) is an age associated neurological disorder which is specified by cardinal motor symptoms such as tremor, stiffness, bradykinesia, postural instability, and non-motor symptoms. Dopaminergic neurons degradation in substantia nigra region and aggregation of αSyn are the classic signs of molecular defects noticed in PD pathogenesis. The discovery of microRNAs (miRNA) predicted to have a pivotal part in various processes regarding regularizing the cellular functions. Studies on dysregulation of miRNA in PD pathogenesis has recently gained the concern where our review unravels the role of miRNA expression in PD and its necessity in clinical validation for therapeutic development in PD. Here, we discussed how miRNA associated with ageing process in PD through molecular mechanistic approach of miRNAs on sirtuins, tumor necrosis factor-alpha and interleukin-6, dopamine loss, oxidative stress and autophagic dysregulation. Further we have also conferred the expression of miRNAs affected by SNCA gene expression, neuronal differentiation and its therapeutic potential with PD. In conclusion, we suggest more rigorous studies should be conducted on understanding the mechanisms and functions of miRNA in PD which will eventually lead to discovery of novel and promising therapeutics for PD.
10.1002/jcp.30932
MicroRNAs in Parkinson's disease: a systematic review and diagnostic accuracy meta-analysis.
Scientific reports
Current clinical tests for Parkinson's disease (PD) provide insufficient diagnostic accuracy leading to an urgent need for improved diagnostic biomarkers. As microRNAs (miRNAs) are promising biomarkers of various diseases, including PD, this systematic review and meta-analysis aimed to assess the diagnostic accuracy of biofluid miRNAs in PD. All studies reporting data on miRNAs expression in PD patients compared to controls were included. Gene targets and significant pathways associated with miRNAs expressed in more than 3 biofluid studies with the same direction of change were analyzed using target prediction and enrichment analysis. A bivariate model was used to calculate sensitivity, specificity, likelihood ratios, and diagnostic odds ratio. While miR-24-3p and miR-214-3p were the most reported miRNA (7 each), miR-331-5p was found to be consistently up regulated in 4 different biofluids. Importantly, miR-19b-3p, miR-24-3p, miR-146a-5p, and miR-221-3p were reported in multiple studies without conflicting directions of change in serum and bioinformatic analysis found the targets of these miRNAs to be associated with pathways important in PD pathology. Of the 102 studies from the systematic review, 15 studies reported sensitivity and specificity data on combinations of miRNAs and were pooled for meta-analysis. Studies (17) reporting sensitivity and specificity data on single microRNA were pooled in a separate meta-analysis. Meta-analysis of the combinations of miRNAs (15 studies) showed that biofluid miRNAs can discriminate between PD patients and controls with good diagnostic accuracy (sensitivity = 0.82, 95% CI 0.76-0.87; specificity = 0.80, 95% CI 0.74-0.84; AUC = 0.87, 95% CI 0.83-0.89). However, we found multiple studies included more males with PD than any other group therefore possibly introducing a sex-related selection bias. Overall, our study captures key miRNAs which may represent a point of focus for future studies and the development of diagnostic panels whilst also highlighting the importance of appropriate study design to develop representative biomarker panels for the diagnosis of PD.
10.1038/s41598-023-43096-9
MiR-9-5p Inhibits the MMP-Induced Neuron Apoptosis through Regulating SCRIB/-Catenin Signaling in Parkinson's Disease.
Oxidative medicine and cellular longevity
The pathogenesis of Parkinson's disease remains unclear that there is no cure for Parkinson's disease yet. The abnormal expressions of certain miRNA are closely related to the occurrence and progression of Parkinson's disease. Here, we demonstrate that miR-9-5p inhibits the dopaminergic neuron apoptosis via the regulation of -catenin signaling which directly targets SCRIB, a tumor suppressor gene. Besides, miR-9-5p improved the motor function of mice with Parkinson's disease. The results of this study suggest that miR-9-5p might be a potential therapeutic target against Parkinson's disease.
10.1155/2022/9173514