Regulation of microtubule-based transport by MAP4.
Semenova Irina,Ikeda Kazuho,Resaul Karim,Kraikivski Pavel,Aguiar Mike,Gygi Steven,Zaliapin Ilya,Cowan Ann,Rodionov Vladimir
Molecular biology of the cell
Microtubule (MT)-based transport of organelles driven by the opposing MT motors kinesins and dynein is tightly regulated in cells, but the underlying molecular mechanisms remain largely unknown. Here we tested the regulation of MT transport by the ubiquitous protein MAP4 using Xenopus melanophores as an experimental system. In these cells, pigment granules (melanosomes) move along MTs to the cell center (aggregation) or to the periphery (dispersion) by means of cytoplasmic dynein and kinesin-2, respectively. We found that aggregation signals induced phosphorylation of threonine residues in the MT-binding domain of the Xenopus MAP4 (XMAP4), thus decreasing binding of this protein to MTs. Overexpression of XMAP4 inhibited pigment aggregation by shortening dynein-dependent MT runs of melanosomes, whereas removal of XMAP4 from MTs reduced the length of kinesin-2-dependent runs and suppressed pigment dispersion. We hypothesize that binding of XMAP4 to MTs negatively regulates dynein-dependent movement of melanosomes and positively regulates kinesin-2-based movement. Phosphorylation during pigment aggregation reduces binding of XMAP4 to MTs, thus increasing dynein-dependent and decreasing kinesin-2-dependent motility of melanosomes, which stimulates their accumulation in the cell center, whereas dephosphorylation of XMAP4 during dispersion has an opposite effect.
10.1091/mbc.E14-01-0022
Phosphorylation-dependent mitochondrial translocation of MAP4 is an early step in hypoxia-induced apoptosis in cardiomyocytes.
Hu J,Chu Z,Han J,Zhang Q,Zhang D,Dang Y,Ren J,Chan H C,Zhang J,Huang Y
Cell death & disease
Hypoxic or ischemic apoptosis is often tightly associated with the opening of mitochondrial permeability transition pore (mPTP); however, the molecular mechanisms regulating mPTP and thus mitochondrial-dependent apoptosis remain elusive. Emerging evidence indicates that the movement of key proteins in or out of mitochondria play a critical regulatory role in apoptosis. Here, we reported that, unexpectedly, the microtubule-associated protein 4 (MAP4) translocated from cytosol to mitochondria upon phosphorylation after hypoxia treatment in neonatal cardiomyocytes. When targeted to mitochondria, MAP4 was found to lead to mPTP opening and induce apoptosis. Mitochondrial accumulation and pro-apoptotic function of MAP4 could be reversed through the genetic inhibition of MAP4 phosphorylation. The MAP4(Ala) mutant, which mimicked the dephosphorylated form, suppressed mitochondrial translocation and apoptosis. Our data reveal a novel role of MAP4 in cardiac apoptosis and suggest a potential therapeutic strategy targeting mitochondrial translocation of MAP4 against apoptotic heart diseases.
10.1038/cddis.2014.369
Microtubule associated protein 4 phosphorylation leads to pathological cardiac remodeling in mice.
Li Lingfei,Zhang Qiong,Zhang Xingyue,Zhang Junhui,Wang Xuefeng,Ren Jun,Jia Jiezhi,Zhang Dongxia,Jiang Xupin,Zhang Jiaping,Mei Hao,Chen Bing,Hu Jiongyu,Huang Yuesheng
EBioMedicine
BACKGROUND:Cardiac remodeling is a pathophysiological process that involves various changes in heart, including cardiac hypertrophy and fibrosis. Cardiac remodeling following pathological stimuli is common trigger leading to cardiac maladaptation and onset of heart failure, and their pathogenesis remains unclear. METHODS:Heart specimens of tetralogy of Fallot (TOF) patients, myocardial infarction (MI) and transverse aortic constriction (TAC) mouse models were collected to determine changes of microtubule associated protein 4 (MAP4) phosphorylation. MAP4 (S667A, S737E and S760E) knock in (MAP4 KI) mouse and cultured neonatal mouse cardiomyocytes or fibroblasts were used to investigate changes of cardiac phenotypes and possible mechanisms with a variety of approaches, including functional, histocytological and pathological observations. FINDINGS:Elevated cardiac phosphorylation of MAP4 (S737 and S760) was observed in TOF patients, MI and TAC mouse models. In MAP4 KI mice, age-dependent cardiac phenotypes, including cardiac hypertrophy, fibrosis, diastolic and systolic dysfunction were observed. In addition, increased cardiomyocyte apoptosis together with microtubule disassembly and mitochondrial translocation of phosphorylated MAP4 was detected prior to the onset of cardiac remodeling, and p38/MAPK was demonstrated to be the possible signaling pathway that mediated MAP4 (S737 and S760) phosphorylation. INTERPRETATION:Our data reveal for the first time that MAP4 drives pathological cardiac remodeling through its phosphorylation. These findings bear the therapeutic potential to ameliorate pathological cardiac remodeling by attenuating MAP4 phosphorylation. FUND: This work was supported by the Key Program of National Natural Science Foundation of China (No.81430042) and National Natural Science Foundation of China (No.81671913).
10.1016/j.ebiom.2018.10.017