A Lipid Signature with Perturbed Triacylglycerol Co-Regulation, Identified from Targeted Lipidomics, Predicts Risk for Type 2 Diabetes and Mediates the Risk from Adiposity in Two Prospective Cohorts of Chinese Adults.
Clinical chemistry
BACKGROUND:The roles of individual and co-regulated lipid molecular species in the development of type 2 diabetes (T2D) and mediation from metabolic risk factors remain unknown. METHODS:We conducted profiling of 166 plasma lipid species in 2 nested case-control studies within 2 independent cohorts of Chinese adults, the Dongfeng-Tongji and the Jiangsu non-communicable disease cohorts. After 4.61 (0.15) and 7.57 (1.13) years' follow-up, 1039 and 520 eligible participants developed T2D in these 2 cohorts, respectively, and controls were 1:1 matched to cases by age and sex. RESULTS:We found 27 lipid species, including 10 novel ones, consistently associated with T2D risk in the 2 cohorts. Differential correlation network analysis revealed significant correlations of triacylglycerol (TAG) 50:3, containing at least one oleyl chain, with 6 TAGs, at least 3 of which contain the palmitoyl chain, all downregulated within cases relative to controls among the 27 lipids in both cohorts, while the networks also both identified the oleyl chain-containing TAG 50:3 as the central hub. We further found that 13 of the 27 lipids consistently mediated the association between adiposity indicators (body mass index, waist circumference, and waist-to-height ratio) and diabetes risk in both cohorts (all P < 0.05; proportion mediated: 20.00%, 17.70%, and 17.71%, and 32.50%, 28.73%, and 33.86%, respectively). CONCLUSIONS:Our findings suggested notable perturbed co-regulation, inferred from differential correlation networks, between oleyl chain- and palmitoyl chain-containing TAGs before diabetes onset, with the oleyl chain-containing TAG 50:3 at the center, and provided novel etiological insight regarding lipid dysregulation in the progression from adiposity to overt T2D.
10.1093/clinchem/hvac090
L-serine supplementation lowers diabetes incidence and improves blood glucose homeostasis in NOD mice.
Holm Laurits J,Haupt-Jorgensen Martin,Larsen Jesper,Giacobini Jano D,Bilgin Mesut,Buschard Karsten
PloS one
Sphingolipids are a diverse group of lipids with important roles in beta-cell biology regulating insulin folding and controlling apoptosis. Sphingolipid biosynthesis begins with the condensation of L-serine and palmitoyl-CoA. Here we tested the effect of L-serine supplementation on autoimmune diabetes development and blood glucose homeostasis in female NOD mice. We found that continuous supplementation of L-serine reduces diabetes incidence and insulitis score. In addition, L-serine treated mice had an improved glucose tolerance test, reduced HOMA-IR, and reduced blood glucose levels. L-serine led to a small reduction in body weight accompanied by reduced food and water intake. L-serine had no effect on pancreatic sphingolipids as measured by mass spectrometry. The data thus suggests that L-serine could be used as a therapeutic supplement in the treatment of Type 1 Diabetes and to improve blood glucose homeostasis.
10.1371/journal.pone.0194414
Glucose Controls Glucagon Secretion by Regulating Fatty Acid Oxidation in Pancreatic α-Cells.
Diabetes
Whole-body glucose homeostasis is coordinated through secretion of glucagon and insulin from pancreatic islets. When glucose is low, glucagon is released from α-cells to stimulate hepatic glucose production. However, the mechanisms that regulate glucagon secretion from pancreatic α-cells remain unclear. Here we show that in α-cells, the interaction between fatty acid oxidation and glucose metabolism controls glucagon secretion. The glucose-dependent inhibition of glucagon secretion relies on pyruvate dehydrogenase and carnitine palmitoyl transferase 1a activity and lowering of mitochondrial fatty acid oxidation by increases in glucose. This results in reduced intracellular ATP and leads to membrane repolarization and inhibition of glucagon secretion. These findings provide a new framework for the metabolic regulation of the α-cell, where regulation of fatty acid oxidation by glucose accounts for the stimulation and inhibition of glucagon secretion. ARTICLE HIGHLIGHTS:It has become clear that dysregulation of glucagon secretion and α-cell function plays an important role in the development of diabetes, but we do not know how glucagon secretion is regulated. Here we asked whether glucose inhibits fatty acid oxidation in α-cells to regulate glucagon secretion. We found that fatty acid oxidation is required for the inhibitory effects of glucose on glucagon secretion through reductions in ATP. These findings provide a new framework for the regulation of glucagon secretion by glucose.
10.2337/db23-0056
Endothelial Palmitoylation Cycling Coordinates Vessel Remodeling in Peripheral Artery Disease.
Wei Xiaochao,Adak Sangeeta,Zayed Mohamed,Yin Li,Feng Chu,Speck Sarah L,Kathayat Rahul S,Zhang Qiang,Dickinson Bryan C,Semenkovich Clay F
Circulation research
RATIONALE:Peripheral artery disease, common in metabolic syndrome and diabetes mellitus, responds poorly to medical interventions and is characterized by chronic vessel immaturity leading to lower extremity amputations. OBJECTIVE:To define the role of reversible palmitoylation at the endothelium in the maintenance of vascular maturity. METHODS AND RESULTS:Endothelial knockout of the depalmitoylation enzyme APT-1 (acyl-protein thioesterase 1) in mice impaired recovery from chronic hindlimb ischemia, a model of peripheral artery disease. Endothelial APT-1 deficiency decreased fibronectin processing, disrupted adherens junctions, and inhibited in vitro lumen formation. In an unbiased palmitoylation proteomic screen of endothelial cells from genetically modified mice, R-Ras, known to promote vessel maturation, was preferentially affected by APT-1 deficiency. R-Ras was validated as an APT-1 substrate, and click chemistry analyses demonstrated increased R-Ras palmitoylation in cells with APT-1 deficiency. APT-1 enzyme activity was decreased in endothelial cells from mice. Hyperglycemia decreased APT-1 activity in human umbilical vein endothelial cells, due, in part, to altered acetylation of the APT-1 protein. Click chemistry analyses demonstrated increased R-Ras palmitoylation in the setting of hyperglycemia. Altered R-Ras trafficking, increased R-Ras palmitoylation, and fibronectin retention were found in diabetes mellitus models. Loss of R-Ras depalmitoylation caused by APT-1 deficiency constrained R-Ras membrane trafficking, as shown by total internal reflection fluorescence imaging. To rescue cellular phenotypes, we generated an R-Ras molecule with an inserted hydrophilic domain to circumvent membrane rigidity caused by defective palmitoylation turnover. This modification corrected R-Ras membrane trafficking, restored fibronectin processing, increased adherens junctions, and rescued defective lumen formation induced by APT-1 deficiency. CONCLUSIONS:These results suggest that endothelial depalmitoylation is regulated by the metabolic milieu and controls plasma membrane partitioning to maintain vascular homeostasis.
10.1161/CIRCRESAHA.120.316752
Regulation of the cardiac Na(+) pump by palmitoylation of its catalytic and regulatory subunits.
Howie Jacqueline,Tulloch Lindsay B,Shattock Michael J,Fuller William
Biochemical Society transactions
The Na+/K+-ATPase (Na+ pump) is the principal consumer of ATP in multicellular organisms. In the heart, the Na+ gradient established by the pump is essential for all aspects of cardiac function, and appropriate regulation of the cardiac Na+ pump is therefore crucial to match cardiac output to the physiological requirements of an organism. The cardiac pump is a multi-subunit enzyme, consisting of a catalytic α-subunit and regulatory β- and FXYD subunits. All three subunits may become palmitoylated, although the functional outcome of these palmitoylation events is incompletely characterized to date. Interestingly, both β- and FXYD subunits may be palmitoylated or glutathionylated at the same cysteine residues. These competing chemically distinct post-translational modifications may mediate functionally different effects on the cardiac pump. In the present article, we review the cellular events that control the balance between these modifications, and discuss the likely functional effects of pump subunit palmitoylation.
10.1042/BST20120269
Palmitate-induced insulin resistance causes actin filament stiffness and GLUT4 mis-sorting without altered Akt signalling.
Journal of cell science
Skeletal muscle insulin resistance, a major contributor to type 2 diabetes, is linked to the consumption of saturated fats. This insulin resistance arises from failure of insulin-induced translocation of glucose transporter type 4 (GLUT4; also known as SLC2A4) to the plasma membrane to facilitate glucose uptake into muscle. The mechanisms of defective GLUT4 translocation are poorly understood, limiting development of insulin-sensitizing therapies targeting muscle glucose uptake. Although many studies have identified early insulin signalling defects and suggest that they are responsible for insulin resistance, their cause-effect has been debated. Here, we find that the saturated fat palmitate (PA) causes insulin resistance owing to failure of GLUT4 translocation in skeletal muscle myoblasts and myotubes without impairing signalling to Akt2 or AS160 (also known as TBC1D4). Instead, PA altered two basal-state events: (1) the intracellular localization of GLUT4 and its sorting towards a perinuclear storage compartment, and (2) actin filament stiffness, which prevents Rac1-dependent actin remodelling. These defects were triggered by distinct mechanisms, respectively protein palmitoylation and endoplasmic reticulum (ER) stress. Our findings highlight that saturated fats elicit muscle cell-autonomous dysregulation of the basal-state machinery required for GLUT4 translocation, which 'primes' cells for insulin resistance.
10.1242/jcs.261300
Palmitoylation cycles and regulation of protein function (Review).
Baekkeskov Steinnunn,Kanaani Jamil
Molecular membrane biology
The efficacy and success of many cellular processes is dependent on a tight orchestration of proteins trafficking to and from their site(s) of action in a time-controlled fashion. Recently, a dynamic cycle of palmitoylation/de-palmitoylation has been shown to regulate shuttling of several proteins, including the small GTPases H-Ras and N-Ras, and the GABA-synthesizing enzyme GAD65, between the Golgi compartment and either the plasma membrane or synaptic vesicle membranes. These proteins are peripheral membrane proteins that in the depalmitoylated state cycle rapidly on and off the cytosolic face of ER/Golgi membranes. Palmitoylation of one or more cysteines, by a Golgi localized palmitoyl transferase (PAT) results in trapping in Golgi membranes, and sorting to a vesicular pathway in route to the plasma membrane or synaptic vesicles. A depalmitoylation step by an acyl protein thioesterase (APT) releases the protein from membranes in the periphery of the cell resulting in retrograde trafficking back to Golgi membranes by a non-vesicular pathway. The proteins can then enter a new cycle of palmitoylation and depalmitoylation. This inter-compartmental trafficking is orders of magnitude faster than vesicular trafficking. Recent advances in identifying a large family of PATs, their protein substrates, and single PAT mutants with severe phenotypes, reveal their critical importance in development, synaptic transmission, and regulation of signaling cascades. The emerging knowledge of enzymes involved in adding and removing palmitate is that they provide an intricate regulatory network involved in timing of protein function and transport that responds to intracellular and extracellular signals.
10.1080/09687680802680108
An Expanding Repertoire of Protein Acylations.
Molecular & cellular proteomics : MCP
Protein post-translational modifications play key roles in multiple cellular processes by allowing rapid reprogramming of individual protein functions. Acylation, one of the most important post-translational modifications, is involved in different physiological activities including cell differentiation and energy metabolism. In recent years, the progression in technologies, especially the antibodies against acylation and the highly sensitive and effective mass spectrometry-based proteomics, as well as optimized functional studies, greatly deepen our understanding of protein acylation. In this review, we give a general overview of the 12 main protein acylations (formylation, acetylation, propionylation, butyrylation, malonylation, succinylation, glutarylation, palmitoylation, myristoylation, benzoylation, crotonylation, and 2-hydroxyisobutyrylation), including their substrates (histones and nonhistone proteins), regulatory enzymes (writers, readers, and erasers), biological functions (transcriptional regulation, metabolic regulation, subcellular targeting, protein-membrane interactions, protein stability, and folding), and related diseases (cancer, diabetes, heart disease, neurodegenerative disease, and viral infection), to present a complete picture of protein acylations and highlight their functional significance in future research.
10.1016/j.mcpro.2022.100193
The two faces of protein palmitoylation in islet β-cell function: potential implications in the pathophysiology of islet metabolic dysregulation and diabetes.
Mohammed Abiy M,Chen Fei,Kowluru Anjaneyulu
Recent patents on endocrine, metabolic & immune drug discovery
Several cellular proteins undergo post-translational lipidation, including prenylation, palmitoylation and myristoylation, which are felt to promote intracellular targeting, membrane association and interaction with effector partner proteins. Recent findings implicate definitive roles of isoprenylation in islet β-cell function including glucose-stimulated insulin secretion [GSIS]. Published evidence also suggests novel regulatory roles for protein palmitoylation not only in GSIS but also in the metabolic dysfunction induced by proinflammatory cytokines and lipotoxic conditions. Herein, we overviewed the existing evidence on the regulatory roles of protein palmitoylation in the metabolic [dys]regulation of the islet β-cell and highlighted the developments in this area, specifically on potential identity of palmitoylated proteins, and on the utility of two structurally distinct inhibitors of palmitoylation [e.g., cerulenin and 2-bromopalmitate] in halting the metabolic dysfunction of the islet β-cell known to occur following exposure to proinflammatory cytokines and lipotoxic conditions. Potential avenues for future research, including the immediate need for discovery of novel small molecule compounds as inhibitors of palmitoyl transferases to attenuate deleterious consequences of proinflammatory cytokines and glucolipotoxicity are discussed. Furthermore, some relevant patents are also highlighted in this review.
10.2174/18722148113079990008
Role of glutamine synthetase in angiogenesis beyond glutamine synthesis.
Eelen Guy,Dubois Charlotte,Cantelmo Anna Rita,Goveia Jermaine,Brüning Ulrike,DeRan Michael,Jarugumilli Gopala,van Rijssel Jos,Saladino Giorgio,Comitani Federico,Zecchin Annalisa,Rocha Susana,Chen Rongyuan,Huang Hongling,Vandekeere Saar,Kalucka Joanna,Lange Christian,Morales-Rodriguez Francisco,Cruys Bert,Treps Lucas,Ramer Leanne,Vinckier Stefan,Brepoels Katleen,Wyns Sabine,Souffreau Joris,Schoonjans Luc,Lamers Wouter H,Wu Yi,Haustraete Jurgen,Hofkens Johan,Liekens Sandra,Cubbon Richard,Ghesquière Bart,Dewerchin Mieke,Gervasio Francesco L,Li Xuri,van Buul Jaap D,Wu Xu,Carmeliet Peter
Nature
Glutamine synthetase, encoded by the gene GLUL, is an enzyme that converts glutamate and ammonia to glutamine. It is expressed by endothelial cells, but surprisingly shows negligible glutamine-synthesizing activity in these cells at physiological glutamine levels. Here we show in mice that genetic deletion of Glul in endothelial cells impairs vessel sprouting during vascular development, whereas pharmacological blockade of glutamine synthetase suppresses angiogenesis in ocular and inflammatory skin disease while only minimally affecting healthy adult quiescent endothelial cells. This relies on the inhibition of endothelial cell migration but not proliferation. Mechanistically we show that in human umbilical vein endothelial cells GLUL knockdown reduces membrane localization and activation of the GTPase RHOJ while activating other Rho GTPases and Rho kinase, thereby inducing actin stress fibres and impeding endothelial cell motility. Inhibition of Rho kinase rescues the defect in endothelial cell migration that is induced by GLUL knockdown. Notably, glutamine synthetase palmitoylates itself and interacts with RHOJ to sustain RHOJ palmitoylation, membrane localization and activation. These findings reveal that, in addition to the known formation of glutamine, the enzyme glutamine synthetase shows unknown activity in endothelial cell migration during pathological angiogenesis through RHOJ palmitoylation.
10.1038/s41586-018-0466-7
Metabolites as regulators of insulin sensitivity and metabolism.
Yang Qin,Vijayakumar Archana,Kahn Barbara B
Nature reviews. Molecular cell biology
The cause of insulin resistance in obesity and type 2 diabetes mellitus (T2DM) is not limited to impaired insulin signalling but also involves the complex interplay of multiple metabolic pathways. The analysis of large data sets generated by metabolomics and lipidomics has shed new light on the roles of metabolites such as lipids, amino acids and bile acids in modulating insulin sensitivity. Metabolites can regulate insulin sensitivity directly by modulating components of the insulin signalling pathway, such as insulin receptor substrates (IRSs) and AKT, and indirectly by altering the flux of substrates through multiple metabolic pathways, including lipogenesis, lipid oxidation, protein synthesis and degradation and hepatic gluconeogenesis. Moreover, the post-translational modification of proteins by metabolites and lipids, including acetylation and palmitoylation, can alter protein function. Furthermore, the role of the microbiota in regulating substrate metabolism and insulin sensitivity is unfolding. In this Review, we discuss the emerging roles of metabolites in the pathogenesis of insulin resistance and T2DM. A comprehensive understanding of the metabolic adaptations involved in insulin resistance may enable the identification of novel targets for improving insulin sensitivity and preventing, and treating, T2DM.
10.1038/s41580-018-0044-8
The role of CD36 in cardiovascular disease.
Shu Hongyang,Peng Yizhong,Hang Weijian,Nie Jiali,Zhou Ning,Wang Dao Wen
Cardiovascular research
CD36, also known as the scavenger receptor B2, is a multifunctional receptor widely expressed in various organs. CD36 plays a crucial role in the uptake of long-chain fatty acids, the main metabolic substrate in myocardial tissue. The maturation and transportation of CD36 is regulated by post-translational modifications, including phosphorylation, ubiquitination, glycosylation, and palmitoylation. CD36 is decreased in pathological cardiac hypertrophy caused by ischaemia-reperfusion and pressure overload, and increased in diabetic cardiomyopathy and atherosclerosis. Deficiency of CD36 alleviates diabetic cardiomyopathy and atherosclerosis, while overexpression of CD36 eliminates ischaemia-reperfusion damage, together suggesting that CD36 is closely associated with the progression of cardiovascular diseases and may be a new therapeutic target. This review summarizes the regulation and post-translational modifications of CD36 and evaluates its role in cardiovascular diseases and its potential as a therapeutic target.
10.1093/cvr/cvaa319
Palmitoylation couples insulin hypersecretion with β cell failure in diabetes.
Cell metabolism
Hyperinsulinemia often precedes type 2 diabetes. Palmitoylation, implicated in exocytosis, is reversed by acyl-protein thioesterase 1 (APT1). APT1 biology was altered in pancreatic islets from humans with type 2 diabetes, and APT1 knockdown in nondiabetic islets caused insulin hypersecretion. APT1 knockout mice had islet autonomous increased glucose-stimulated insulin secretion that was associated with prolonged insulin granule fusion. Using palmitoylation proteomics, we identified Scamp1 as an APT1 substrate that localized to insulin secretory granules. Scamp1 knockdown caused insulin hypersecretion. Expression of a mutated Scamp1 incapable of being palmitoylated in APT1-deficient cells rescued insulin hypersecretion and nutrient-induced apoptosis. High-fat-fed islet-specific APT1-knockout mice and global APT1-deficient db/db mice showed increased β cell failure. These findings suggest that APT1 is regulated in human islets and that APT1 deficiency causes insulin hypersecretion leading to β cell failure, modeling the evolution of some forms of human type 2 diabetes.
10.1016/j.cmet.2022.12.012