logo logo
Multifunctional Conductive and Electrogenic Hydrogel Repaired Spinal Cord Injury via Immunoregulation and Enhancement of Neuronal Differentiation. Advanced materials (Deerfield Beach, Fla.) Spinal cord injury (SCI) is a refractory neurological disorder. Due to the complex pathological processes, especially the secondary inflammatory cascade and the lack of intrinsic regenerative capacity, it is difficult to recover neurological function after SCI. Meanwhile, simulating the conductive microenvironment of the spinal cord reconstructs electrical neural signal transmission interrupted by SCI and facilitates neural repair. Therefore, a double-crosslinked conductive hydrogel (BP@Hydrogel) containing black phosphorus nanoplates (BP) is synthesized. When placed in a rotating magnetic field (RMF), the BP@Hydrogel can generate stable electrical signals and exhibit electrogenic characteristic. In vitro, the BP@Hydrogel shows satisfactory biocompatibility and can alleviate the activation of microglia. When placed in the RMF, it enhances the anti-inflammatory effects. Meanwhile, wireless electrical stimulation promotes the differentiation of neural stem cells (NSCs) into neurons, which is associated with the activation of the PI3K/AKT pathway. In vivo, the BP@Hydrogel is injectable and can elicit behavioral and electrophysiological recovery in complete transected SCI mice by alleviating the inflammation and facilitating endogenous NSCs to form functional neurons and synapses under the RMF. The present research develops a multifunctional conductive and electrogenic hydrogel for SCI repair by targeting multiple mechanisms including immunoregulation and enhancement of neuronal differentiation. 10.1002/adma.202313672
Capacitive-Coupling-Responsive Hydrogel Scaffolds Offering Wireless In Situ Electrical Stimulation Promotes Nerve Regeneration. Advanced materials (Deerfield Beach, Fla.) Electrical stimulation (ES) has shown beneficial effects in repairing injured tissues. However, current ES techniques that use tissue-traversing leads and bulky external power suppliers have significant limitations in translational medicine. Hence, exploring noninvasive in vivo ES to provide controllable electrical cues in tissue engineering is an imminent necessity. Herein, a conductive hydrogel with in situ electrical generation capability as a biodegradable regeneration scaffold and wireless ES platform for spinal cord injury (SCI) repair is demonstrated. When a soft insulated metal plate is placed on top of the injury site as a wireless power transmitter, the conductive hydrogel implanted at the injury site can serve as a wireless power receiver, and the capacitive coupling between the receiver and transmitter can generate an alternating current in the hydrogel scaffold owing to electrostatic induction effect. In a complete transection model of SCI rats, the implanted conductive hydrogels with capacitive-coupling in situ ES enhance functional recovery and neural tissue repair by promoting remyelination, accelerating axon regeneration, and facilitating endogenous neural stem cell differentiation. This facile wireless-powered electroactive-hydrogel strategy thus offers on-demand in vivo ES with an adjustable timeline, duration, and strength and holds great promise in translational medicine. 10.1002/adma.202310483
A Bioinspired Injectable, Adhesive, and Self-Healing Hydrogel with Dual Hybrid Network for Neural Regeneration after Spinal Cord Injury. Advanced materials (Deerfield Beach, Fla.) Hydrogel-based regenerated scaffolds show promise as a platform for neural regeneration following spinal cord injury (SCI). Nevertheless, the persistent problem of poor mechanical strength and limited integration with the host tissue still exists. In this study, a bioinspired hydrogel with highly sophisticated features for neural regeneration after SCI is developed. The hydrogel is composed of dihydroxyphenylalanine (DOPA)-grafted chitosan and a designer peptide, offering a unique set of qualities such as being injectable, having self-healing abilities, and adhering to tissues. Compared to conventional hydrogels, this hydrogel ensures a significant promotion of immune response modulation and axon regrowth while featuring synapse formation of various neurotransmitters and myelin regeneration. Subsequently, functional recoveries are enhanced, including motor function, sensory function, and particularly bladder defect repair. These positive findings demonstrate that the hydrogel has great potential as a strategy for repairing SCI. Moreover, the versatility of this strategy goes beyond neural regeneration and holds promise for tissue regeneration in other contexts. Overall, this proposed hydrogel represents an innovative and multifaceted tool for engineering structures in the biomedical field. 10.1002/adma.202304896