Metabolomics-based study of the potential interventional effects of Xiao-Xu-Ming Decoction on cerebral ischemia/reperfusion rats.
Journal of ethnopharmacology
ETHNOPHARMACOLOGICAL RELEVANCE:Xiao-Xu-Ming Decoction (XXMD) is a classical Chinese medicinal compound for the treatment of ischemic stroke, which has good efficacy in clinical studies and also plays a neuroprotective role in pharmacological studies. AIM OF THE STUDY:The purpose of this study is to investigate the potential and integral interventional effects of XXMD on cerebral ischemia/reperfusion rat model. MATERIALS AND METHODS:In this study, H NMR metabolomics was used, combined with neurological functional assessments, cerebral infarct area measurements, and pathological staining including Nissl staining, immunofluorescence staining of NeuN and TUNEL, and immunohistochemical staining of MCT2, to analyze the metabolic effects of XXMD in the treatment of an ischemia/reperfusion rat model. RESULTS:It's observed that XXMD treatment could improve the neurological deficit scores and reduce the cerebral infarct areas on cerebral ischemia/reperfusion rat model. The pathological staining results performed that XXMD treatment could improve the decrease of Nissl bodies and the expression of NeuN and MCT2, reduce the high expression of TUNEL. In H NMR study, it revealed that the metabolic patterns among three experimental groups were different, the level of lactate, acetate, NAA, glutamate, and GABA were improved to varying degrees in different brain area. CONCLUSION:Our findings indicated that XXMD has positive effect on neuroprotection and improvement of metabolism targeting cerebral ischemic injury in rats, which showed great potential for ischemic stroke.
10.1016/j.jep.2022.115379
Metabolomics and serum pharmacochemistry combined with network pharmacology uncover the potential effective ingredients and mechanisms of Yin-Chen-Si-Ni Decoction treating ANIT-induced cholestatic liver injury.
Journal of ethnopharmacology
ETHNOPHARMACOLOGICAL RELEVANCE:Yin-Chen-Si-Ni Decoction is a classical traditional Chinese medicine (TCM) prescription that is used clinically for treating cholestatic liver injury (CLI) and other hepatic diseases. However, the material basis and underlying mechanisms of YCSND are not clear. AIM OF THE STUDY:To investigate effective components and mechanisms of YCSND in the treatment of CLI using serum pharmacochemistry, metabolomics, and network pharmacology. MATERIALS AND METHODS:Biochemical indicators, liver index, and histopathology analysis were adopted to evaluate the protective effect of YCSND on ANIT-induced CLI rats. Then, a UPLC-Q-Exactive Orbitrap MS/MS analysis of the migrant components in serum and liver including prototype and metabolic components was performed in YCSND. In addition, a study of the endogenous metabolites using serum and liver metabolomics was performed to discover potential biomarkers, metabolic pathways, and associated mechanisms. Further, the network pharmacology oriented by in vivo migrant components was also used to pinpoint the active ingredients, core targets, and signaling pathways of YCSND. Finally, molecular docking and molecular dynamics simulation (MDS) were used to predict the binding ability between components and core targets, and a real-time qPCR (RT-qPCR) experiment was used to measure the mRNA expression of the core target genes. RESULTS:Pharmacodynamic studies suggest that YCSND could exert obvious hepatoprotective effects on CLI rats. Furthermore, 68 compounds, comprising 32 prototype components and 36 metabolic components from YCSND, were found by serum pharmacochemistry analysis. Network pharmacology combining molecular docking and MDS showed that apigenin, naringenin, 18β-glycyrrhetinic acid, and isoformononetin have better binding ability to 6 core targets (EGFR, AKT1, IL6, MMP9, CASP3, PPARG). Additionally, PI3K, TNF-α, MAPK3, and six core target genes in liver tissues were validated with RT-qPCR. Metabolomics revealed the anti-CLI effects of YCSND by regulating four metabolic pathways of primary bile acid and biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, and arachidonic acid metabolism. Integrating metabolomics and network pharmacology identified four pathways related to CLI, including the PI3K-Akt, HIF-1, MAPK, and TNF signaling pathway, which revealed multiple mechanisms of YCSND against CLI that might involve anti-inflammatory and apoptosis. CONCLUSION:The research based on serum pharmacochemistry, network pharmacology, and metabolomics demonstrates the beneficial hepatoprotective effects of YCSND on CLI rats by regulating multiple components, multiple targets, and multiple pathways, and provides a potent means of illuminating the material basis and mechanisms of TCM prescriptions.
10.1016/j.jep.2024.118713
Integration of metabolomics and transcriptomics reveals that Da Chuanxiong Formula improves vascular cognitive impairment via ACSL4/GPX4 mediated ferroptosis.
Journal of ethnopharmacology
ETHNOPHARMACOLOGICAL RELEVANCE:Da Chuanxiong Formula (DCX) is a traditional herbal compound composed of Gastrodia elata Bl. and Ligusticum chuanxiong Hort, which could significantly enhance blood circulation and neuroprotection, showing promise in treating Vascular Cognitive Impairment (VCI). AIM OF STUDY:This study aims to elucidate the potential of DCX in treating VCI and its underlying mechanism. MATERIALS AND METHODS:Firstly, the cognitive behavior level, blood flow changes, and brain pathology changes were evaluated through techniques such as the Morris water maze, step-down, laser speckle, coagulation analysis, and pathological staining to appraise the DCX efficacy. Then, the DCX targeting pathways were decoded by merging metabolomics with transcriptomics. Finally, the levels of reactive oxygen species (ROS), Fe, and lipid peroxidation related to the targeting signaling pathways of DCX were detected by kit, and the expression levels of mRNAs or proteins related to ferroptosis were determined by qPCR or Western blot assays respectively. RESULTS:DCX improved cognitive abilities and cerebral perfusion significantly, and mitigated pathological damage in the hippocampal region of VCI model rats. Metabolomics revealed that DCX was able to call back 33 metabolites in plasma and 32 metabolites in brain samples, and the majority of the differential metabolites are phospholipid metabolites. Transcriptomic analysis revealed that DCX regulated a total of 3081 genes, with the ferroptosis pathway exhibiting the greatest impact. DCX inhibited ferroptosis of VCI rates by decreasing the levels of ferrous iron, ROS, and malondialdehyde (MDA) while increasing the level of superoxide dismutase (SOD) and glutathione (GSH) in VCI rats. Moreover, the mRNA and protein levels of ACSL4, LPCAT3, ALOX15, and GPX4, which are related to lipid metabolism in ferroptosis, were also regulated by DCX. CONCLUSION:Our research findings indicated that DCX could inhibit ferroptosis through the ACSL4/GPX4 signaling pathway, thereby exerting its therapeutic benefits on VCI.
10.1016/j.jep.2024.117868
Analysis of the mechanism of curcumin against osteoarthritis using metabolomics and transcriptomics.
Naunyn-Schmiedeberg's archives of pharmacology
Curcumin, a polyphenolic compound derived from the turmeric plant (Curcuma longa), has been extensively studied for its anti-inflammatory and anti-proliferative properties. The safety and efficacy of curcumin have been thoroughly validated. Nevertheless, the underlying mechanism for treating osteoarthritis remains ambiguous. This study aims to reveal the potential mechanism of curcumin in treating osteoarthritis by using metabolomics and transcriptomics. Firstly, we validated the effect of curcumin on inflammatory factors in human articular chondrocytes. Secondly, we explored the cellular metabolism mechanism of curcumin against osteoarthritis using cell metabolomics. Thirdly, we assessed the differences in gene expression of human articular chondrocytes through transcriptomics. Lastly, to evaluate the essential targets and elucidate the potential mechanism underlying the therapeutic effects of curcumin in osteoarthritis, we conducted a screening of the proteins within the shared pathway of metabolomics and transcriptomics. Our results demonstrated that curcumin significantly decreased the levels of inflammatory markers, such as IL-β, IL-6, and TNF-α, in human articular chondrocytes. Cell metabolomics identified 106 differential metabolites, including beta-aminopropionitrile, 3-amino-2-piperidone, pyrrole-2-carboxaldehyde, and various other components. The transcriptomic analysis yielded 1050 differential mRNAs. Enrichment analysis showed that the differential metabolites and mRNAs were significantly enriched in seven pathways, including glycine, serine, and threonine metabolism; pentose and glucuronate interconversions; glycerolipid metabolism; histidine metabolism; mucin-type o-glycan biosynthesis; inositol phosphate metabolism; and cysteine and methionine metabolism. A total of 23 key targets were identified to be involved in these pathways. We speculate that curcumin may alleviate osteoarthritis by targeting key proteins involved in glycine, serine, and threonine metabolism; inhibiting pyruvate production; and modulating glycolysis.
10.1007/s00210-023-02785-y