Amniotic membrane in ophthalmology: properties, preparation, storage and indications for grafting-a review.
Jirsova Katerina,Jones Gary L A
Cell and tissue banking
The use of amniotic membrane in ophthalmic surgery and other surgical procedures in the fields of dermatology, plastic surgery, genitourinary medicine and otolaryngology is on the increase. Furthermore, amniotic membrane and its epithelial and mesenchymal cells have broad use in regenerative medicine and hold great promise in anticancer treatment. Amniotic membrane is a rich source of biologically active factors and as such, promotes healing and acts as an effective material for wound dressing. Amniotic membrane supports epithelialization and exhibits anti-fibrotic, anti-inflammatory, anti-angiogenic and anti-microbial features. Placentas utilised in the preparation of amniotic membrane are retrieved from donors undergoing elective caesarean section. Maternal blood must undergo serological screening at the time of donation and, in the absence of advanced diagnostic testing techniques, 6 months postpartum in order to cover the time window for the potential transmission of communicable diseases. Amniotic membrane is prepared by blunt dissection under strict aseptic conditions, then is typically transferred onto a nitrocellulose paper carrier, usually with the epithelial side up, and cut into multiple pieces of different dimensions. Amniotic membrane can be stored under various conditions, most often cryopreserved in glycerol or dimethyl sulfoxide or their mixture with culture medium or buffers. Other preservation methods include lyophilisation and air-drying. In ophthalmology, amniotic membrane is increasingly used for ocular surface reconstruction, including the treatment of persistent epithelial defects and non-healing corneal ulcers, corneal perforations and descemetoceles, bullous keratopathy, as well as corneal disorders with associated limbal stem cell deficiency, pterygium, conjunctival reconstruction, corneoscleral melts and perforations, and glaucoma surgeries.
10.1007/s10561-017-9618-5
Amniotic membrane, clinical applications and tissue engineering. Review of its ophthalmic use.
Lacorzana J
Archivos de la Sociedad Espanola de Oftalmologia
The use of amniotic membrane in ophthalmology has been increasing in recent years due to its multiple biological and tectonic properties, improvement in the process of obtaining, ease of use, and advancement in tissue engineering. The amniotic membrane has become one of the main adjuvant treatments, in ophthalmic surgery as well as in other medical-surgical specialties. The development of tissue engineering has allowed it to be used, not only in its classic form, but also by the use of drops and other presentations. The different steps prior to its use (preparation and conservation), the different surgical techniques, and their main clinical applications are described throughout the article.
10.1016/j.oftal.2019.09.010
The developments in amniotic membrane transplantation in glaucoma and vitreoretinal procedures.
International ophthalmology
The main reasons why Amniotic Membrane (AM) is transplanted in Ophthalmology are: to provide a substrate for cellular growth and to provide tectonic support or as a biological bandage and barrier that protects the wound to facilitate an environment for wound healing. The application of AM is well-documented in corneal disorders of various aetiologies [1], however, research within the field has highlighted how it can be used in conjunctival disorders and most recently, in glaucoma and vitreoretinal procedures. This review explores the preservation modalities of AM and summarises the current literature regarding AM transplantation in Glaucoma and Vitreoretinal conditions. AM transplantation in conjunction with trabeculectomy was reported to be used in two different surgical techniques. They differ in relation to the position of the implant: below the scleral flap or over the entire exposed sclera. The results of these studies suggest that AM transplant is a safe procedure that helps in the improvement of the intraocular pressure when associated with trabeculectomies. Moreover, it enhances trabeculectomies success rates when used along with mitomycin C [2]. The use of AM is also described for managing leaking blebs. It is mentioned to be a suitable alternative to conjunctival advancement. Regarding AM transplantation in glaucoma shunt or valve surgeries, the current literature is relatively limited. However, AM has been described as a good tectonic support for shunt procedures [3]. Successful results are described in the literature for surgical treatments using AM plug for vitreoretinal procedures. In particular macular hole closure and rhegmatogenous retinal detachment. In conclusion, AM transplant is a very promising and versatile adjutant therapy. However, further studies are also required for a better understanding and refinement of surgical techniques.
10.1007/s10792-022-02570-5
Amniotic membrane in wound healing: new perspectives.
Journal of wound care
There are several reasons for skin damage, including genetic factors, disorders, acute trauma, hard-to-heal wounds, or surgical interventions. Whatever the cause, wounds have a substantial impact on people who experience them, their caregivers and the healthcare system. Advanced wound care products have been researched and developed, providing an opportunity for faster and more complete healing. Tissue engineering (TE) is a promising strategy that can overcome limitations when choosing a graft for a wound. Amniotic membrane is a highly abundant, readily available, and inexpensive biological tissue that does not raise ethical concerns, with many applications in different fields of TE and regenerative medicine. It has attractive physical characteristics, such as elasticity, rigidity and mechanical strength, among others. The effects can also be potentiated by association with other substances, such as hyaluronic acid and growth factors. This paper describes new perspectives involving the use of amniotic membranes.
10.12968/jowc.2022.0054
Amniotic Membrane Transplantation in Strabismus Surgery.
Kassem Rehab Rashad,El-Mofty Randa Mohamed Abdel-Moneim
Current eye research
PURPOSE:Adhesions between the extraocular muscles and surrounding tissues pose a main cause of failure of strabismus reoperations. Amniotic membrane (AM) transplantation during extraocular muscle surgery, to prevent the formation of adhesions, has been a subject of research during the past decade. This review aims to determine the value, indications, and tips on usage of AM transplantation during strabismus surgery. MATERIALS AND METHODS:All references cited in PubMed in English were searched using the key words: amniotic membrane strabismus or amniotic membrane extraocular muscles, and a brief summary of these was described. In addition, certain articles were chosen to provide introductory information on wound healing and fibrosis, AM properties and how it works after transplantation, and AM processing and preservation. RESULTS:AM used for transplantation during extraocular muscle surgery may be cryopreserved, dried, or fresh. It may be oriented with its stroma or epithelium towards the muscle. It may or may not be fixed with sutures. What were the best choices? Various studies attempted to answer these questions. Many of the studies reviewed, however, were inconclusive or contradictory. Fresh AM seemed effective, but carried a risk of transmission of communicable diseases. Dried membrane was not of value in preventing adhesions. Histopathologically, cryopreserved membrane prevented the development of adhesions in the region of its presence, regardless of its orientation, and without the need for suture fixation. To accentuate this histopathological effect during clinical practice, it was recommended to utilize the largest segment possible of cryopreserved membrane and limit its usage to cases where adhesions are expected to be the main cause of failure of strabismus surgery. CONCLUSION:Cryopreserved AM transplantation was safe and histopathologically effective in preventing adhesions. This effect was, however, less pronounced clinically. Its use during strabismus reoperations is merited if previous recommendations and precautions are considered.
10.1080/02713683.2018.1562555