Research progress on circadian clock genes in common abdominal malignant tumors.
Yang Sheng-Li,Ren Quan-Guang,Wen Lu,Hu Jian-Li,Wang Heng-Yi
Oncology letters
The circadian clock refers to the inherent biological rhythm of an organism, which, is accurately regulated by numerous clock genes. Studies in recent years have reported that the abnormal expression of clock genes is ubiquitous in common abdominal malignant tumors, including liver, colorectal, gastric and pancreatic cancer. In addition, the abnormal expression of certain clock genes is closely associated with clinical tumor parameters or patient prognosis. Studies in clock genes may expand the knowledge about the mechanism of occurrence and development of tumors, and may provide a new approach for tumor therapy. The present study summarizes the research progress in this field.
10.3892/ol.2017.6856
Research on circadian clock genes in common abdominal malignant tumors.
Qiu Meng-Jun,Liu Li-Ping,Jin Si,Fang Xie-Fan,He Xiao-Xiao,Xiong Zhi-Fan,Yang Sheng-Li
Chronobiology international
Circadian rhythm describes the 24-h oscillation in physiology and behavior of living organisms and presents a timing controller for life activity. Studies in recent years have reported that the abnormal expression of clock genes is closely related to the development of common abdominal malignant tumors. The expression of the 14 kinds of clock genes in 6 abdominal malignant tumors from Cancer Genome Atlas (TCGA) data was integrated and analyzed using R and Perl programming languages to show the association between clock gene expression and prognosis of cancer patients. Analysis of TCGA data indicated that the overexpression of Per1-3, Cry2, CLOCK, NR1D2 and RORA with underexpression of Timeless and NPAS2 was associated with a favorable prognosis in kidney cancer. In liver cancer, high expressions of Cry2 and RORA were correlated with prolonged overall survival (OS) in patients, while high expressions of NPAS2 and Timeless were correlated with a poor survival. High expression of CLOCK was positively correlated with OS in colon cancer patients. High expression of Cry2 and low expression of DEC1 were associated with a favorable prognosis in pancreatic cancer patients, respectively. Most of these clock-genes expressions were closely related to the clinical stage and degree of tumor differentiation of patients. Aberrant clock gene expression is related to the biological characteristics of abdominal malignant tumors, which likely has a causal role in cancer development and survival.
10.1080/07420528.2018.1477792
Timing gone awry: distinct tumour suppressive and oncogenic roles of the circadian clock and crosstalk with hypoxia signalling in diverse malignancies.
Journal of translational medicine
BACKGROUND:The circadian clock governs a large variety of fundamentally important physiological processes in all three domains of life. Consequently, asynchrony in timekeeping mechanisms could give rise to cellular dysfunction underpinning many disease pathologies including human neoplasms. Yet, detailed pan-cancer evidence supporting this notion has been limited. METHODS:In an integrated approach uniting genomic, transcriptomic and clinical data of 21 cancer types (n = 18,484), we interrogated copy number and transcript profiles of 32 circadian clock genes to identify putative loss-of-function (Clock) and gain-of-function (Clock) players. Kaplan-Meier, Cox regression and receiver operating characteristic analyses were employed to evaluate the prognostic significance of both gene sets. RESULTS:Clock and Clock were associated with tumour-suppressing and tumour-promoting roles respectively. Downregulation of Clock genes resulted in significantly higher mortality rates in five cancer cohorts (n = 2914): bladder (P = 0.027), glioma (P < 0.0001), pan-kidney (P = 0.011), clear cell renal cell (P < 0.0001) and stomach (P = 0.0007). In contrast, patients with high expression of oncogenic Clock genes had poorer survival outcomes (n = 2784): glioma (P < 0.0001), pan-kidney (P = 0.0034), clear cell renal cell (P = 0.014), lung (P = 0.046) and pancreas (P = 0.0059). Both gene sets were independent of other clinicopathological features to permit further delineation of tumours within the same stage. Circadian reprogramming of tumour genomes resulted in activation of numerous oncogenic pathways including those associated with cancer stem cells, suggesting that the circadian clock may influence self-renewal mechanisms. Within the hypoxic tumour microenvironment, circadian dysregulation is exacerbated by tumour hypoxia in glioma, renal, lung and pancreatic cancers, resulting in additional death risks. Tumour suppressive Clock genes were negatively correlated with hypoxia inducible factor-1A targets in glioma patients, providing a novel framework for investigating the hypoxia-clock signalling axis. CONCLUSIONS:Loss of timekeeping fidelity promotes tumour progression and influences clinical outcomes. Clock and Clock may offer novel druggable targets for improving patient prognosis. Both gene sets can be used for patient stratification in adjuvant chronotherapy treatment. Emerging interactions between the circadian clock and hypoxia may be harnessed to achieve therapeutic advantage using hypoxia-modifying compounds in combination with first-line treatments.
10.1186/s12967-019-1880-9
An Overview of the Polymorphisms of Circadian Genes Associated With Endocrine Cancer.
Morales-Santana Sonia,Morell Santiago,Leon Josefa,Carazo-Gallego Angel,Jimenez-Lopez Jose C,Morell María
Frontiers in endocrinology
A major consequence of the world industrialized lifestyle is the increasing period of unnatural light in environments during the day and artificial lighting at night. This major change disrupts endogenous homeostasis with external circadian cues, which has been associated to higher risk of diseases affecting human health, mainly cancer among others. Circadian disruption promotes tumor development and accelerate its fast progression. The dysregulation mechanisms of circadian genes is greatly affected by the genetic variability of these genes. To date, several core circadian genes, also called circadian clock genes, have been identified, comprising the following: , and . The polymorphic variants of these circadian genes might contribute to an individual's risk to cancer. In this short review, we focused on clock circadian clock-related genes, major contributors of the susceptibility to endocrine-dependent cancers through affecting circadian clock, most likely affecting hormonal regulation. We examined polymorphisms affecting breast, prostate and ovarian carcinogenesis, in addition to pancreatic and thyroid cancer. Further study of the genetic composition in circadian clock-controlled tumors will be of great importance by establishing the foundation to discover novel genetic biomarkers for cancer prevention, prognosis and target therapies.
10.3389/fendo.2019.00104
Hypermetabolic state is associated with circadian rhythm disruption in mouse and human cancer cells.
Proceedings of the National Academy of Sciences of the United States of America
Crosstalk between metabolism and circadian rhythms is a fundamental building block of multicellular life, and disruption of this reciprocal communication could be relevant to disease. Here, we investigated whether maintenance of circadian rhythms depends on specific metabolic pathways, particularly in the context of cancer. We found that in adult mouse fibroblasts, ATP levels were a major contributor to signal from a clock gene luciferase reporter, although not necessarily to the strength of circadian cycling. In contrast, we identified significant metabolic control of circadian function across a series of pancreatic adenocarcinoma cell lines. Metabolic profiling of congenic tumor cell clones revealed substantial diversity among these lines that we used to identify clones to generate circadian reporter lines. We observed diverse circadian profiles among these lines that varied with their metabolic phenotype: The most hypometabolic line [exhibiting low levels of oxidative phosphorylation (OxPhos) and glycolysis] had the strongest rhythms, while the most hypermetabolic line had the weakest rhythms. Pharmacological enhancement of OxPhos decreased the amplitude of circadian oscillation in a subset of tumor cell lines. Strikingly, inhibition of OxPhos enhanced circadian rhythms only in the tumor cell line in which glycolysis was also low, thereby establishing a hypometabolic state. We further analyzed metabolic and circadian phenotypes across a panel of human patient-derived melanoma cell lines and observed a significant negative association between metabolic activity and circadian cycling strength. Together, these findings suggest that metabolic heterogeneity in cancer directly contributes to circadian function and that high levels of glycolysis or OxPhos independently disrupt circadian rhythms in these cells.
10.1073/pnas.2319782121
[Physiological and pathophysiological role of the circadian clock system].
Orvosi hetilap
It has been well known for ages that in living organisms the rhythmicity of biological processes is linked to the ~ 24-hour light-dark cycle. However, the exact function of the circadian clock system has been explored only in the past decades. It came to light that the photosensitive primary "master clock" is situated in the suprachiasmatic photosensitive nuclei of the special hypothalamic region, and that it is working according to ~24-hour changes of light and darkness. The master clock sends its messages to the peripheral "slave clocks". In many organs, like pancreatic β-cells, the slave clocks have autonomic functions as well. Two essential components of the clock system are proteins encoded by the CLOCK and BMAL1 genes. CLOCK genes are in interaction with endonuclear receptors such as peroxisoma-proliferator activated receptors and Rev-erb-α, as well as with the hypothalamic-pituitary-adrenal axis, regulating the adaptation to stressors, energy supply, metabolic processes and cardiovascular system. Melatonin, the product of corpus pineale has a significant role in the functions of the clock system. The detailed discovery of the clock system has changed our previous knowledge about the development of many diseases. The most explored fields are hypertension, cardiovascular diseases, metabolic processes, mental disorders, cancers, sleep apnoe and joint disorders. CLOCK genes influence ageing as well. The recognition of the periodicity of biological processes makes the optimal dosing of certain drugs feasible. The more detailed discovery of the interaction of the clock system might further improve treatment and prevention of many disorders.
10.1556/OH.2012.29436
Genetic variation of clock genes and cancer risk: a field synopsis and meta-analysis.
Benna Clara,Helfrich-Förster Charlotte,Rajendran Senthilkumar,Monticelli Halenya,Pilati Pierluigi,Nitti Donato,Mocellin Simone
Oncotarget
BACKGROUND:The number of studies on the association between clock genes' polymorphisms and cancer susceptibility has increased over the last years but the results are often conflicting and no comprehensive overview and quantitative summary of the evidence in this field is available. RESULTS:Literature search identified 27 eligible studies comprising 96756 subjects (cases: 38231) and investigating 687 polymorphisms involving 14 clock genes. Overall, 1025 primary and subgroup meta-analyses on 366 gene variants were performed. Study distribution by tumor was as follows: breast cancer (n=15), prostate cancer (n=3), pancreatic cancer (n=2), non-Hodgkin's lymphoma (n=2), glioma (n=1), chronic lymphocytic leukemia (n=1), colorectal cancer (n=1), non-small cell lung cancer (n=1) and ovarian cancer (n=1).We identified 10 single nucleotide polymorphisms (SNPs) significantly associated with cancer risk: NPAS2 rs10165970 (mixed and breast cancer shiftworkers), rs895520 (mixed), rs17024869 (breast) and rs7581886 (breast); CLOCK rs3749474 (breast) and rs11943456 (breast); RORA rs7164773 (breast and breast cancer postmenopausal), rs10519097 (breast); RORB rs7867494 (breast cancer postmenopausal), PER3 rs1012477 (breast cancer subgroups) and assessed the level of quality evidence to be intermediate. We also identified polymorphisms with lower quality statistically significant associations (n=30). CONCLUSIONS:Our work supports the hypothesis that genetic variation of clock genes might affect cancer risk. These findings also highlight the need for more efforts in this research field in order to fully establish the contribution of clock gene variants to the risk of developing cancer. METHODS:We conducted a systematic review and meta-analysis of the evidence on the association between clock genes' germline variants and the risk of developing cancer. To assess result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Subgroup meta-analysis was also performed based on participant features and tumor type. The breast cancer subgroup was further stratified by work conditions, estrogen receptor/progesterone receptor status and menopausal status, conditions associated with the risk of breast cancer in different studies.
10.18632/oncotarget.15074
The interplay of the circadian clock and metabolic tumorigenesis.
Trends in cell biology
The circadian clock and cell metabolism are both dysregulated in cancer cells through intrinsic cell-autonomous mechanisms and external influences from the tumor microenvironment. The intricate interplay between the circadian clock and cancer cell metabolism exerts control over various metabolic processes, including aerobic glycolysis, de novo nucleotide synthesis, glutamine and protein metabolism, lipid metabolism, mitochondrial metabolism, and redox homeostasis in cancer cells. Importantly, oncogenic signaling can confer a moonlighting function on core clock genes, effectively reshaping cellular metabolism to fuel cancer cell proliferation and drive tumor growth. These interwoven regulatory mechanisms constitute a distinctive feature of cancer cell metabolism.
10.1016/j.tcb.2023.11.004
The circadian clock is disrupted in pancreatic cancer.
PLoS genetics
Disruption of the circadian clock is linked to cancer development and progression. Establishing this connection has proven beneficial for understanding cancer pathogenesis, determining prognosis, and uncovering novel therapeutic targets. However, barriers to characterizing the circadian clock in human pancreas and human pancreatic cancer-one of the deadliest malignancies-have hindered an appreciation of its role in this cancer. Here, we employed normalized coefficient of variation (nCV) and clock correlation analysis in human population-level data to determine the functioning of the circadian clock in pancreas cancer and adjacent normal tissue. We found a substantially attenuated clock in the pancreatic cancer tissue. Then we exploited our existing mouse pancreatic transcriptome data to perform an analysis of the human normal and pancreas cancer samples using a machine learning method, cyclic ordering by periodic structure (CYCLOPS). Through CYCLOPS ordering, we confirmed the nCV and clock correlation findings of an intact circadian clock in normal pancreas with robust cycling of several core clock genes. However, in pancreas cancer, there was a loss of rhythmicity of many core clock genes with an inability to effectively order the cancer samples, providing substantive evidence of a dysregulated clock. The implications of clock disruption were further assessed with a Bmal1 knockout pancreas cancer model, which revealed that an arrhythmic clock caused accelerated cancer growth and worse survival, accompanied by chemoresistance and enrichment of key cancer-related pathways. These findings provide strong evidence for clock disruption in human pancreas cancer and demonstrate a link between circadian disruption and pancreas cancer progression.
10.1371/journal.pgen.1010770
Disruption of the Clock Component Bmal1 in Mice Promotes Cancer Metastasis through the PAI-1-TGF-β-myoCAF-Dependent Mechanism.
Advanced science (Weinheim, Baden-Wurttemberg, Germany)
The circadian clock in animals and humans plays crucial roles in multiple physiological processes. Disruption of circadian homeostasis causes detrimental effects. Here, it is demonstrated that the disruption of the circadian rhythm by genetic deletion of mouse brain and muscle ARNT-like 1 (Bmal1) gene, coding for the key clock transcription factor, augments an exacerbated fibrotic phenotype in various tumors. Accretion of cancer-associated fibroblasts (CAFs), especially the alpha smooth muscle actin positive myoCAFs, accelerates tumor growth rates and metastatic potentials. Mechanistically, deletion of Bmal1 abrogates expression of its transcriptionally targeted plasminogen activator inhibitor-1 (PAI-1). Consequently, decreased levels of PAI-1 in the tumor microenvironment instigate plasmin activation through upregulation of tissue plasminogen activator and urokinase plasminogen activator. The activated plasmin converts latent TGF-β into its activated form, which potently induces tumor fibrosis and the transition of CAFs into myoCAFs, the latter promoting cancer metastasis. Pharmacological inhibition of the TGF-β signaling largely ablates the metastatic potentials of colorectal cancer, pancreatic ductal adenocarcinoma, and hepatocellular carcinoma. Together, these data provide novel mechanistic insights into disruption of the circadian clock in tumor growth and metastasis. It is reasonably speculated that normalization of the circadian rhythm in patients provides a novel paradigm for cancer therapy.
10.1002/advs.202301505
Circadian regulator BMAL1::CLOCK promotes cell proliferation in hepatocellular carcinoma by controlling apoptosis and cell cycle.
Proceedings of the National Academy of Sciences of the United States of America
Hepatocellular carcinoma (HCC) remains a global health challenge whose incidence is growing worldwide. Previous evidence strongly supported the notion that the circadian clock controls physiological homeostasis of the liver and plays a key role in hepatocarcinogenesis. Despite the progress, cellular and molecular mechanisms underpinning this HCC-clock crosstalk remain unknown. Addressing this knowledge gap, we show here that although the human HCC cells Hep3B, HepG2, and Huh7 displayed variations in circadian rhythm profiles, all cells relied on the master circadian clock transcription factors, BMAL1 and CLOCK, for sustained cell growth. Down-regulating or in the HCC cells induced apoptosis and arrested cell cycle at the G/M phase. Mechanistically, we found that inhibiting / induced dysregulation of the cell cycle regulators and which cooperatively contribute to tumor cell death. / knockdown caused downregulation of that led to apoptosis activation and upregulation of which arrested the cell cycle at the G/M phase. Collectively, our results suggest that the circadian clock regulators BMAL1 and CLOCK promote HCC cell proliferation by controlling and levels, thereby preventing apoptosis and cell cycle arrest. Our findings shed light on cellular impact of the clock proteins for maintaining HCC oncogenesis and provide proof-of-principle for developing cancer therapy based on modulation of the circadian clock.
10.1073/pnas.2214829120