Developmental and adult stress: effects of steroids and neurosteroids.
Stress (Amsterdam, Netherlands)
In humans, exposure to early life adversity has profound implications for susceptibility to developing neuropsychiatric disorders later in life. Studies in rodents have shown that stress experienced during early postnatal life can have lasting effects on brain development. Glucocorticoids and sex steroids are produced in endocrine glands and the brain from cholesterol; these molecules bind to nuclear and membrane-associated steroid receptors. Unlike other steroids that can also be made in the brain, neurosteroids bind specifically to neurotransmitter receptors, not steroid receptors. The relationships among steroids, neurosteroids, and stress are multifaceted and not yet fully understood. However, studies demonstrating altered levels of progestogens, androgens, estrogens, glucocorticoids, and their neuroactive metabolites in both developmental and adult stress paradigms strongly suggest that these molecules may be important players in stress effects on brain circuits and behavior. In this review, we discuss the influence of developmental and adult stress on various components of the brain, including neurons, glia, and perineuronal nets, with a focus on sex steroids and neurosteroids. Gaining an enhanced understanding of how early adversity impacts the intricate systems of brain steroid and neurosteroid regulation could prove instrumental in identifying novel therapeutic targets for stress-related conditions.
10.1080/10253890.2024.2317856
Neurosteroids; potential underpinning roles in maintaining homeostasis.
Rahmani Behrouz,Ghasemi Rasoul,Dargahi Leila,Ahmadiani Abolhassan,Haeri Ali
General and comparative endocrinology
The neuroactive steroids which are synthesized in the brain and nervous system are known as "Neurosteroids". These steroids have crucial functions such as contributing to the myelination and organization of the brain connectivity. Under the stressful circumstances, the concentrations of neurosteroid products such as allopregnanolone (ALLO) and allotetrahydrodeoxycorticosterone (THDOC) alter. It has been suggested that these stress-derived neurosteroids modulate the physiological response to stress. Moreover, it has been demonstrated that the hypothalamic-pituitary-adrenal (HPA) axis mediates the physiological adaptation following stress in order to maintain homeostasis. Although several regulatory pathways have been introduced, the exact role of neurosteroids in controlling HPA axis is not clear to date. In this review, we intend to discern specific pathways associated with regulation of HPA axis in which neuroactive steroids have the main role. In this respect, we propose pathways that may be initiated after neurosteroidogenesis in different brain subregions following acute stress which are potentially capable of activating or inhibiting the HPA axis.
10.1016/j.ygcen.2015.09.030
The role of estrogen receptor manipulation during traumatic stress on changes in emotional memory induced by traumatic stress.
Psychopharmacology
RATIONALE:Traumatic stress leads to persistent fear, which is a core feature of post-traumatic stress disorder (PTSD). Women are more likely than men to develop PTSD after trauma exposure, which suggests women are differentially sensitive to traumatic stress. However, it is unclear how this differential sensitivity manifests. Cyclical changes in vascular estrogen release could be a contributing factor where levels of vascular estrogens (and activation of estrogen receptors) at the time of traumatic stress alter the impact of traumatic stress. METHODS:To examine this, we manipulated estrogen receptors at the time of stress and observed the effect this had on fear and extinction memory (within the single prolonged stress (SPS) paradigm) in female rats. In all experiments, freezing and darting were used to measure fear and extinction memory. RESULTS:In Experiment 1, SPS enhanced freezing during extinction testing, and this effect was blocked by nuclear estrogen receptor antagonism prior to SPS. In Experiment 2, SPS decreased conditioned freezing during the acquisition and testing of extinction. Administration of 17β-estradiol altered freezing in control and SPS animals during the acquisition of extinction, but this treatment had no effect on freezing during the testing of extinction memory. In all experiments, darting was only observed to footshock onset during fear conditioning. CONCLUSION:The results suggest multiple behaviors (or different behavioral paradigms) are needed to characterize the nature of traumatic stress effects on emotional memory in female rats and that nuclear estrogen receptor antagonism prior to SPS blocks SPS effects on emotional memory in female rats.
10.1007/s00213-023-06342-6
Pituitary adenylate cyclase activating polypeptide (PACAP), stress, and sex hormones.
King S Bradley,Toufexis Donna J,Hammack Sayamwong E
Stress (Amsterdam, Netherlands)
Stressor exposure is associated with the onset and severity of many psychopathologies that are more common in women than men. Moreover, the maladaptive expression and function of stress-related hormones have been implicated in these disorders. Evidence suggests that PACAP has a critical role in the stress circuits mediating stress-responding, and PACAP may interact with sex hormones to contribute to sex differences in stress-related disease. In this review, we describe the role of the PACAP/PAC1 system in stress biology, focusing on the role of stress-induced alterations in PACAP expression and signaling in the development of stress-induced behavioral change. Additionally, we present more recent data suggesting potential interactions between stress, PACAP, and circulating estradiol in pathological states, including PTSD. These studies suggest that the level of stress and circulating gonadal hormones may differentially regulate the PACAPergic system in males and females to influence anxiety-like behavior and may be one mechanism underlying the discrepancies in human psychiatric disorders.
10.1080/10253890.2017.1336535