Neurotransmitter alteration in a testosterone propionate-induced polycystic ovarian syndrome rat model.
Chaudhari Nirja K,Nampoothiri Laxmipriya P
Hormone molecular biology and clinical investigation
BACKGROUND:Polycystic ovarian syndrome (PCOS), one of the leading causes of infertility seen in women, is characterized by anovulation and hyperandrogenism, resulting in ovarian dysfunction. In addition, associations of several metabolic complications like insulin resistance, obesity, dyslipidemia and psychological co-morbidities are well known in PCOS. One of the major factors influencing mood and the emotional state of mind is neurotransmitters. Also, these neurotransmitters are very crucial for GnRH release. Hence, the current study investigates the status of neurotransmitters in PCOS. MATERIALS AND METHODS:A PCOS rat model was developed using testosterone. Twenty-one-day-old rats were subcutaneously injected with 10 mg/kg body weight of testosterone propionate (TP) for 35 days. The animals were validated for PCOS characteristics by monitoring estrus cyclicity, serum testosterone and estradiol levels and by histological examination of ovarian sections. Neurotransmitter estimation was carried out using fluorometric and spectrophotometric methods. RESULTS:TP-treated animals demonstrated increased serum testosterone levels with unaltered estradiol content, disturbed estrus cyclicity and many peripheral cysts in the ovary compared to control rats mimicking human PCOS. Norepinephrine (NE), dopamine, serotonin, γ-amino butyric acid (GABA) and epinephrine levels were significantly low in TP-induced PCOS rats compared to control ones, whereas the activity of acetylcholinesterase in the PCOS brain was markedly elevated. CONCLUSION:Neurotransmitter alteration could be one of the reasons for disturbed gonadotropin-releasing hormone (GnRH) release, consequently directing the ovarian dysfunction in PCOS. Also, decrease in neurotransmitters, mainly NE, serotonin and dopamine (DA) attributes to mood disorders like depression and anxiety in PCOS.
10.1515/hmbci-2016-0035
Impose of KNDy/GnRH neural circuit in PCOS, ageing, cancer and Alzheimer's disease: StAR actions in prevention of neuroendocrine dysfunction.
Ageing research reviews
The Kisspeptin1 (KISS1)/neurokinin B (NKB)/Dynorphin (Dyn) [KNDy] neurons in the hypothalamus regulate the reproduction stage in human beings and rodents. KNDy neurons co-expressed all KISS1, NKB, and Dyn peptides, and hence commonly regarded as KISS1 neurons. KNDy neurons contribute to the "GnRH pulse generator" and are implicated in the regulation of pulsatile GnRH release. The estradiol (E2)-estrogen receptor (ER) interactions over GnRH neurons in the hypothalamus cause nitric oxide (NO) discharge, in addition to presynaptic GABA and glutamate discharge from respective neurons. The released GABA and glutamate facilitate the activity of GnRH neurons via GABAA-R and AMPA/kainate-R. The KISS1 stimulates MAPK/ERK1/2 signaling and cause the release of Ca from intracellular store, which contribute to neuroendocrine function, increase apoptosis and decrease cell proliferation and metastasis. The ageing in women deteriorates KISS1/KISS1R interaction in the hypothalamus which causes lower levels of GnRH. Because examining the human brain is so challenging, decades of clinical research have failed to find the causes of KNDy/GnRH dysfunction. The KISS1/KISS1R interactions in the brain have a neuroprotective effect against Alzheimer's disease (AD). These findings modulate the pathophysiological role of the KNDy/GnRH neural network in polycystic ovarian syndrome (PCOS) associated with ageing and, its protective role in cancer and AD. This review concludes with protecting effect of the steroid-derived acute regulatory enzyme (StAR) against neurotoxicity in the hippocampus, and hypothalamus, and these measures are fundamental for delaying ageing with PCOS. StAR could serve as novel diagnostic marker and therapeutic target for the most prevalent hormone-sensitive breast cancers (BCs).
10.1016/j.arr.2023.102086
Neuroendocrine Determinants of Polycystic Ovary Syndrome.
International journal of environmental research and public health
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women and a major cause of anovulatory infertility. A diagnosis of PCOS is established based the presence of two out of three clinical symptoms, which are criteria accepted by the ESHRE/ASRM (European Society of Human Reproduction and Embryology/American Society for Reproductive Medicine). Gonadotropin-releasing hormone (GnRH) is responsible for the release of luteinizing hormone, and follicle stimulating hormone from the pituitary and contributes a leading role in controlling reproductive function in humans. The goal of this review is to present the current knowledge on neuroendocrine determinations of PCOS. The role of such neurohormones as GnRH, and neuropeptides kisspeptin, neurokinin B, phoenixin-14, and galanin is discussed in this aspect. Additionally, different neurotransmitters (gamma-aminobutyric acid (GABA), glutamate, serotonin, dopamine, and acetylcholine) can also be involved in neuroendocrine etiopathogenesis of PCOS. Studies have shown a persistent rapid GnRH pulse frequency in women with PCOS present during the whole ovulatory cycle. Other studies have proved that patients with PCOS are characterized by higher serum kisspeptin levels. The observations of elevated serum kisspeptin levels in PCOS correspond with the hypothesis that overactivity in the kisspeptin system is responsible for hypothalamic-pituitary-gonadal axis overactivity. In turn, this causes menstrual disorders, hyperandrogenemia and hyperandrogenism. Moreover, abnormal regulation of Neurokinin B (NKB) is also suspected of contributing to PCOS development, while NKB antagonists are used in the treatment of PCOS leading to reduction in Luteinizing hormone (LH) concentration and total testosterone concentration. GnRH secretion is regulated not only by kisspeptin and neurokinin B, but also by other neurohormones, such as phoenixin-14, galanin, and Glucagon-like peptide-1 (GLP-1), that have favorable effects in counteracting the progress of PCOS. A similar process is associated with the neurotransmitters such as GABA, glutamate, serotonin, dopamine, and acetylcholine, as well as the opioid system, which may interfere with secretion of GnRH, and therefore, influence the development and severity of symptoms in PCOS patients. Additional studies are required to explain entire, real mechanisms responsible for PCOS neuroendocrine background.
10.3390/ijerph19053089