Growth factor-eluting hydrogels for management of corneal defects.
Materials science & engineering. C, Materials for biological applications
With 1.5-2.0 million new cases annually worldwide, corneal injury represents a common cause of vision loss, often from irreversible scarring due to surface corneal defects. In this study, we assessed the use of hepatocyte growth factor (HGF) loaded into an in situ photopolymerizable transparent gelatin-based hydrogel for the management of corneal defects. In vitro release kinetics showed that, in regard to the total amount of HGF released over a month, 55 ± 11% was released during the first 24 h, followed by a slow release profile for up to one month. The effect of HGF was assessed using an ex vivo model of pig corneal defect. After three days of organ culture, epithelial defects were found to be completely healed for 89% of the corneas treated with HGF, compared to only 11% of the corneas that had fully re-epithelialized when treated with the hydrogel without HGF. The thickness of the epithelial layer was found to be significantly higher for the HGF-treated group compared to the group treated with hydrogel without HGF (p = 0.0012). Finally, histological and immunostaining assessments demonstrated a better stratification and adhesion of the epithelial layer in the presence of HGF. These results suggest that the HGF-loaded hydrogel system represents a promising solution for the treatment of persistent corneal defects at risk of scarring.
10.1016/j.msec.2020.111790
Interleukin-36 Receptor Signaling Attenuates Epithelial Wound Healing in C57BL/6 Mouse Corneas.
Cells
The IL-36 cytokines are known to play various roles in mediating the immune and inflammatory response to tissue injury in a context-dependent manner. This study investigated the role of IL-36R signaling in mediating epithelial wound healing in normal (NL) and diabetic (DM) C57BL/6 mouse corneas. The rate of epithelial wound closure was significantly accelerated in IL-36 receptor-deficient (IL-36R) compared to wild-type (WT) mice. Wounding increased IL-36α and -36γ but repressed IL-36R antagonist (IL-36Ra) expression in B6 mouse corneal epithelial cells. The wound-induced proinflammatory cytokines CXCL1 and CXCL2 were dampened, while the antimicrobial peptides (AMPs) S100A8 and A9 were augmented in IL-36R mouse corneas. Intriguingly, the expression of AMP LCN2 was augmented at the mRNA level. LCN2 deficiency resulted in an acceleration of epithelial wound healing. IL-36R deficiency also greatly increased the healing rate of the corneal epithelial wound in DM mice. IL-36R deficiency also suppressed IL-1β, IL-1Ra, and ICAM expression in unwounded-DM mice and wounded NL corneas. Opposing IL-1β and ICAM, the expression of IL-Ra in DM corneas of IL-36R mice was augmented. The presence of recombinant IL-1Ra and IL-36Ra accelerated epithelial wound closure in T1DM corneas of B6 mice. Our study revealed an unprecedented role of IL-36R signaling in controlling corneal epithelial wound healing in normal (NL) and diabetic (DM) mice. Our data suggest that IL-36Ra, similar to IL-1Ra, might be a therapeutic reagent for improving wound healing and reducing wound-associated ulceration, particularly in the cornea and potentially in the skin of DM patients.
10.3390/cells12121587
Chitosan-poloxamer-based thermosensitive hydrogels containing zinc gluconate/recombinant human epidermal growth factor benefit for antibacterial and wound healing.
Lin Shiyu,Pei Linlin,Zhang Wei,Shu Gang,Lin Juchun,Li Haohuan,Xu Funeng,Tang Huaqiao,Peng Guangneng,Zhao Ling,Yin Lizi,Zhang Li,Huang Ruoyue,Chen Shiqi,Yuan Zhixiang,Fu Hualin
Materials science & engineering. C, Materials for biological applications
Chitosan/poloxamer-based thermosensitive hydrogels containing zinc gluconate/recombinant human epidermal growth factor (ZnG/rhEGF@Chit/Polo) were developed as a convenient, safe and effective dressing for skin wound treatment. Their fabrication procedure and characterization were reported, and their morphology was examined by a scanning electron microscope. Antibacterial and biofilms activities were evaluated by in vitro tests to reveal the inhibitory effects and scavenging activity on the biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. ZnG/rhEGF@Chit/Polo was also investigated as a potential therapeutic agent for wound healing therapy. In vivo wound healing studies on rats for 21 days proves that ZnG/rhEGF@Chit/Polo supplements the requisite Zn and rhEGF for wound healing to promote the vascular remodeling and collagen deposition, facilitate fibrogenesis, and reduce the level of interleukin 6 for wound basement repair, and thus is a good wound therapy.
10.1016/j.msec.2021.112450
The proinflammatory cytokines IL-1β and TNF-α modulate corneal epithelial wound healing through p16 suppressing STAT3 activity.
Wang Xiaolei,Zhang Songmei,Dong Muchen,Li Yunqiu,Zhou Qingjun,Yang Lingling
Journal of cellular physiology
The proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) are involved in the corneal inflammatory response and wound healing following corneal injuries. However, the mechanism by which proinflammatory cytokines modulate corneal epithelial wound healing remains unclear. In this study, we found that IL-1β or TNF-α was transiently elevated during corneal epithelial wound healing in mice. After corneal epithelial debridement, persistent treatment with IL-1β or TNF-α restrained the level of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) and boosted the level of cell cycle inhibitor p16 , resulting in impaired corneal epithelial repair. When p16 was deleted, the p-STAT3 level in corneal epithelium was enhanced and corneal epithelial wound healing was clearly accelerated. In diabetic mice, IL-1β, TNF-α, and p16 appeared a sustained and strong expression in the corneal epithelium, and p16 knockdown partially reverted the defective diabetic corneal epithelial repair. Furthermore, immunoprecipitation proved that p16 interacted with p-STAT3 and thus possibly suppressed the STAT3 activity. Our findings revealed a novel mechanism that the proinflammatory cytokines modulate corneal epithelial wound healing via the p16 -STAT3 signaling.
10.1002/jcp.29823
The combined effect of recombinant human epidermal growth factor and erythropoietin on full-thickness wound healing in diabetic rat model.
Hong Joon Pio,Park Sung Woo
International wound journal
Diabetic wound is a chronic wound in which normal process of wound healing is interrupted. Lack of blood supply, infection and lack of functional growth factors are assumed as some of the conditions that lead to non-healing environment. Epidermal growth factor (EGF) acts primarily to stimulate epithelial cell growth across wound. Erythropoietin (EPO) is a haematopoietic factor, which stimulates the production, differentiation and maturation of erythroid precursor cells. This study hypothesised combining these two factors, non-healing process of diabetic wound will be compensated and eventually lead to acceleration of wound healing compared with single growth factor treatment. A total of 30 diabetic Sprague-Dawley rats were divided into three treatment groups (single treatment of rh-EPO or rh-EGF or combined treatment on a full-thickness skin wound). To assess the wound healing effects of the components, the wound size and the healing time were measured in each treatment groups. The skin histology was examined by light microscopy and immunohistochemical analysis of proliferating markers was performed. The combined treatment with rh-EPO and rh-EGF improved full-thickness wound significantly (P < 0·05) accelerating 50% healing time with higher expression of Ki-67 compared with single growth factor-treated groups. The combined treatment failed to accelerate the total healing time when compared with single growth factor treatments. However, the significant improvement were found in wound size reduction in the combined treatment group on day 4 against single growth factor-treated groups (P < 0·05). This study demonstrated that the combined treatment of rh-EPO and rh-EGF improved the wound healing possibly through a synergistic action of each growth factor. This application provides further insight into combined growth factor therapy on non-healing diabetic wounds.
10.1111/j.1742-481X.2012.01100.x
Effects of topical erythropoietin on healing experimentally-induced avascular scleral damage in a rabbit model.
Feizi Sepehr,Kanavi Mozhgan Rezaei,Safari Sahar,Ebrahimi Hadi,Javadi Mohammad Ali
Experimental eye research
The present study was designed to investigate the effect of topical erythropoietin on the healing process of induced necrotizing scleritis and to evaluate the ocular side effects of this treatment modality in a rabbit model. Necrotizing scleritis was induced in 8 New Zealand albino rabbits. The animals were then randomly divided into one of two groups: a treated group administered a topical erythropoietin-containing cellulose-based gel every 8 h or a control group treated with a cellulose-based gel without erythropoietin every 8 h. The sizes of the lesions measured at different time points were compared between the groups. After three months, the rabbits' eyes were enucleated and histologically and immunohistochemically evaluated for angiogenesis and apoptosis. The lesions were completely vascularized in all eyes of the treated group and 50% of eyes of the control group. The mean interval from the induction of scleral necrosis to a complete improvement was 28 days in the treated group and 62.5 days in the control group (P = 0.04). Histological examination revealed that erythropoietin enhanced the improvement of necrotizing scleritis by stimulating angiogenesis and reducing apoptosis. Neovascularization of the cornea, iris, or retina was not observed in the treated group. We observed a significantly faster recovery to complete improvement of necrotizing scleritis in rabbit eyes treated with erythropoietin compared to those of the control group. Treated eyes had a higher rate of complete healing and had no ocular safety concerns. This therapeutic modality represents a promising treatment for scleral necrosis following various types of ocular surgery.
10.1016/j.exer.2019.107898
Interleukin-11 Suppresses Ocular Surface Inflammation and Accelerates Wound Healing.
Investigative ophthalmology & visual science
Purpose:Regulation of inflammation is critical for achieving favorable outcomes in wound healing. In this study, we determine the functional role and mechanism of action of IL-11, an immunomodulatory cytokine, in regulating inflammatory response at the ocular surface. Methods:Corneal injury was induced by mechanical removal of the epithelium and anterior stroma using an AlgerBrush II. Transcript and protein levels of IL-11 in injured cornea were quantified using real-time PCR and ELISA analysis. Corneal inflammation was assessed by measuring frequencies of total CD45+ inflammatory cells, CD11b+Ly6G+ polymorphonuclear cells (neutrophils), and CD11b+Ly6G- mononuclear cells (macrophages, monocytes) at the ocular surface using flow cytometry. To assess the effect of IL-11 on innate immune cell function, cell activation marker and inflammatory cytokines including major histocompatibility complex (MHC) class II, myeloperoxidase (MPO), TNFα, and inducible nitric oxide synthase (iNOS) were measured following recombinant IL-11 treatment (1 µg/mL). Injured corneas were topically treated with IL-11 (1 µg/mL), and wound healing was evaluated using corneal fluorescein staining. Results:Corneal injury resulted in increased levels of IL-11 in the cornea, particularly in the stroma. Neutrophils and CD11b+ mononuclear cells (macrophages, monocytes) substantially expressed IL-11 receptor. Interestingly, IL-11 significantly downregulated the activation of immune cells, as evidenced by the lower expression of MHC II and TNFα by CD11b+ mononuclear cells and lower levels of MPO by neutrophils. Topical administration of IL-11 to injured corneas led to faster wound healing and better retention of tissue architecture. Conclusions:Our findings demonstrate IL-11 is a key modulator of ocular surface inflammation and provide novel evidence of IL-11 as a potential therapeutic to control inflammatory damage and accelerate wound repair following injury.
10.1167/iovs.64.14.1
TGF-β-Based Therapies for Treating Ocular Surface Disorders.
Cells
The cornea is continuously exposed to injuries, ranging from minor scratches to deep traumas. An effective healing mechanism is crucial for the cornea to restore its structure and function following major and minor insults. Transforming Growth Factor-Beta (TGF-β), a versatile signaling molecule that coordinates various cell responses, has a central role in corneal wound healing. Upon corneal injury, TGF-β is rapidly released into the extracellular environment, triggering cell migration and proliferation, the differentiation of keratocytes into myofibroblasts, and the initiation of the repair process. TGF-β-mediated processes are essential for wound closure; however, excessive levels of TGF-β can lead to fibrosis and scarring, causing impaired vision. Three primary isoforms of TGF-β exist-TGF-β1, TGF-β2, and TGF-β3. Although TGF-β isoforms share many structural and functional similarities, they present distinct roles in corneal regeneration, which adds an additional layer of complexity to understand the role of TGF-β in corneal wound healing. Further, aberrant TGF-β activity has been linked to various corneal pathologies, such as scarring and Peter's Anomaly. Thus, understanding the molecular and cellular mechanisms by which TGF-β1-3 regulate corneal wound healing will enable the development of potential therapeutic interventions targeting the key molecule in this process. Herein, we summarize the multifaceted roles of TGF-β in corneal wound healing, dissecting its mechanisms of action and interactions with other molecules, and outline its role in corneal pathogenesis.
10.3390/cells13131105
Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration.
International journal of nanomedicine
PURPOSE:Chronic refractory wounds are a multifactorial comorbidity of diabetes mellitus with the characteristic of impaired vascular networks. Currently, there is a lack of effective treatments for such wounds. Various types of mesenchymal stem cell-derived exosomes (MSC-exos) have been shown to exert multiple therapeutic effects on skin regeneration. We aimed to determine whether a constructed combination of human umbilical cord MSC (hUCMSC)-derived exosomes (hUCMSC-exos) and Pluronic F-127 (PF-127) hydrogel could improve wound healing. MATERIALS AND METHODS:We topically applied human umbilical cord-derived MSC (hUCMSC)-derived exosomes (hUCMSC-exos) encapsulated in a thermosensitive PF-127 hydrogel to a full-thickness cutaneous wound in a streptozotocin-induced diabetic rat model. The material properties and wound healing ability of the hydrogel and cellular responses were analyzed. RESULTS:Compared with hUCMSC-exos, PF-127-only or control treatment, the combination of PF-127 and hUCMSC-exos resulted in a significantly accelerated wound closure rate, increased expression of CD31 and Ki67, enhanced regeneration of granulation tissue and upregulated expression of vascular endothelial growth factor (VEGF) and factor transforming growth factor beta-1 (TGFβ-1). CONCLUSION:The efficient delivery of hUCMSC-exos in PF-127 gel and improved exosome ability could promote diabetic wound healing. Thus, this biomaterial-based exosome therapy may represent a new therapeutic approach for cutaneous regeneration of chronic wounds.
10.2147/IJN.S249129
VEGF-A, PDGF-BB and HB-EGF engineered for promiscuous super affinity to the extracellular matrix improve wound healing in a model of type 1 diabetes.
White Michael J V,Briquez Priscilla S,White David A V,Hubbell Jeffrey A
NPJ Regenerative medicine
Chronic non-healing wounds, frequently caused by diabetes, lead to lower quality of life, infection, and amputation. These wounds have limited treatment options. We have previously engineered growth factors to bind to exposed extracellular matrix (ECM) in the wound environment using the heparin-binding domain of placental growth factor-2 (PlGF-2), which binds promiscuously to ECM proteins. Here, in the type 1 diabetic (T1D) NOD mouse model, engineered growth factors (eGFs) improved both re-epithelialization and granulation tissue formation. eGFs were even more potent in combination, and the "triple therapy" of vascular endothelial growth factor-A (VEGF-PlGF-2), platelet-derived growth factor-BB (PDGF-BB-PlGF-2), and heparin-binding epidermal growth factor (HB-EGF-PlGF-2) both improved wound healing and remained at the site of administration for significantly longer than wild-type growth factors. In addition, we also found that changes in the cellular milieu of a wound, including changing amounts of M1 macrophages, M2 macrophages and effector T cells, are most predictive of wound-healing success in the NOD mouse model. These results suggest that the triple therapy of VEGF-PlGF-2, PDGF-BB-PlGF-2, and HB-EGF-PlGF-2 may be an effective therapy for chronic non-healing wounds in that occur as a complication of diabetes.
10.1038/s41536-021-00189-1
Corneal epithelial wound healing impaired in keratinocyte-specific HB-EGF-deficient mice in vivo and in vitro.
Yoshioka Ryuji,Shiraishi Atsushi,Kobayashi Takeshi,Morita Shin-Ichi,Hayashi Yasuhito,Higashiyama Shigeki,Ohashi Yuichi
Investigative ophthalmology & visual science
PURPOSE:To study the role played by HB-EGF in corneal epithelial wound healing. METHODS:A 2-mm corneal epithelial wound was created in keratinocyte-specific, HB-EGF-deficient mice--HB(lox/lox):K-5Cre (HB(-/-))--and the speed of wound healing was compared with that in wild-type (WT) mice. Cultured confluent mouse corneal epithelial cells (MCECs) from WT and HB(-/-) mice were scraped, and the bare area was measured. The proliferation of MCECs was determined by BrdU incorporation. The degree of attachment of WT and HB(-/-) MCECs was also determined. The mRNA expression of EGF family and cell adhesion molecules was determined by real-time PCR. RESULTS:Corneal epithelial wound healing was significantly delayed in HB(-/-) mice, and the expression of HB-EGF was detected at the leading edge of the wound in HB(lox/+):K5-Cre (HB(+/-)) mice by the presence of lacZ staining. The wound closure was significantly impaired in HB(-/-) MCECs and was improved by adding HB-EGF. The number of BrdU-positive MCECs of WT and HB(-/-) mice was not significantly different, and both increased to different degrees when HB-EGF was added. The adhesion of isolated HB(-/-) MCECs was lower than that of WT MCECs, but the degree of adhesion was restored by adding HB-EGF. The expression of epiregulin was upregulated in HB(-/-) MCECs, and α6- and β1-integrin were upregulated by adding HB-EGF. CONCLUSIONS:HB-EGF plays an important role in corneal epithelial cell healing by enhancing cellular attachment and part of cell proliferation.
10.1167/iovs.10-5158
Coacervate delivery of HB-EGF accelerates healing of type 2 diabetic wounds.
Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society
Chronic wounds such as diabetic ulcers pose a significant challenge as a number of underlying deficiencies prevent natural healing. In pursuit of a regenerative wound therapy, we developed a heparin-based coacervate delivery system that provides controlled release of heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) within the wound bed. In this study, we used a polygenic type 2 diabetic mouse model to evaluate the capacity of HB-EGF coacervate to overcome the deficiencies of diabetic wound healing. In full-thickness excisional wounds on NONcNZO10 diabetic mice, HB-EGF coacervate enhanced the proliferation and migration of epidermal keratinocytes, leading to accelerated epithelialization. Furthermore, increased collagen deposition within the wound bed led to faster wound contraction and greater wound vascularization. Additionally, in vitro assays demonstrated that HB-EGF released from the coacervate successfully increased migration of diabetic human keratinocytes. The multifunctional role of HB-EGF in the healing process and its enhanced efficacy when delivered by the coacervate make it a promising therapy for diabetic wounds.
10.1111/wrr.12319
The role of hepatocyte growth factor in corneal wound healing.
Experimental eye research
Hepatocyte growth factor (HGF) is a glycoprotein produced by mesenchymal cells and operates as a key molecule for tissue generation and renewal. During corneal injury, HGF is primarily secreted by stromal fibroblasts and promotes epithelial wound healing in a paracrine manner. While this mesenchymal-epithelial interaction is well characterized in various organs and the cornea, the role of HGF in corneal stromal and endothelial wound healing is understudied. In addition, HGF has been shown to play an anti-fibrotic role by inhibiting myofibroblast generation and subsequent production of a disorganized extracellular matrix and tissue fibrosis. Therefore, HGF represents a potential therapeutic tool in numerous organs in which myofibroblasts are responsible for tissue scarring. Corneal fibrosis can be a devastating sequela of injury and can result in corneal opacification and retrocorneal membrane formation leading to severe vision loss. In this article, we concisely review the available literature regarding the role of HGF in corneal wound healing. We highlight the influence of HGF on cellular behaviors in each corneal layer. Additionally, we suggest the possibility that HGF may represent a therapeutic tool for interrupting dysregulated corneal repair processes to improve patient outcomes.
10.1016/j.exer.2017.10.006
Fibroblast growth factor receptor 2 (FGFR2) is required for corneal epithelial cell proliferation and differentiation during embryonic development.
Zhang Jinglin,Upadhya Dinesh,Lu Lin,Reneker Lixing W
PloS one
Fibroblast growth factors (FGFs) play important roles in many aspects of embryonic development. During eye development, the lens and corneal epithelium are derived from the same surface ectodermal tissue. FGF receptor (FGFR)-signaling is essential for lens cell differentiation and survival, but its role in corneal development has not been fully investigated. In this study, we examined the corneal defects in Fgfr2 conditional knockout mice in which Cre expression is activated at lens induction stage by Pax6 P0 promoter. The cornea in LeCre, Fgfr2(loxP/loxP) mice (referred as Fgfr2(CKO)) was analyzed to assess changes in cell proliferation, differentiation and survival. We found that Fgfr2(CKO) cornea was much thinner in epithelial and stromal layer when compared to WT cornea. At embryonic day 12.5-13.5 (E12.5-13.5) shortly after the lens vesicle detaches from the overlying surface ectoderm, cell proliferation (judged by labeling indices of Ki-67, BrdU and phospho-histone H3) was significantly reduced in corneal epithelium in Fgfr2(CKO) mice. At later stage, cell differentiation markers for corneal epithelium and underlying stromal mesenchyme, keratin-12 and keratocan respectively, were not expressed in Fgfr2(CKO) cornea. Furthermore, Pax6, a transcription factor essential for eye development, was not present in the Fgfr2(CKO) mutant corneal epithelial at E16.5 but was expressed normally at E12.5, suggesting that FGFR2-signaling is required for maintaining Pax6 expression in this tissue. Interestingly, the role of FGFR2 in corneal epithelial development is independent of ERK1/2-signaling. In contrast to the lens, FGFR2 is not required for cell survival in cornea. This study demonstrates for the first time that FGFR2 plays an essential role in controlling cell proliferation and differentiation, and maintaining Pax6 levels in corneal epithelium via ERK-independent pathways during embryonic development.
10.1371/journal.pone.0117089
Corneal epithelial cell growth over tethered-protein/peptide surface-modified hydrogels.
Jacob Jean T,Rochefort James R,Bi Jingjing,Gebhardt Bryan M
Journal of biomedical materials research. Part B, Applied biomaterials
In this study, we investigated the corneal epithelial cell growth rate and adhesion to novel hydrogels with (1) extracellular matrix proteins [fibronectin, laminin, substance P, and insulin-like growth factor-1 (IGF-1)] and (2) peptide sequences [RGD and fibronectin adhesion-promoting peptide (FAP)] tethered to their surface on poly(ethylene glycol) (PEG) chains. The growth rate to confluence of primary rabbit cornea epithelial cells was compared for plain polymethacrylic acid-co-hydroxyethyl methacrylate (PHEMA/MAA) hydrogels, PHEMA/MAA hydrogels coated with extracellular matrix proteins or peptides, and PHEMA/MAA hydrogels with tethered extracellular matrix proteins or peptides on the surface. The development of focal adhesions by the epithelial cells grown on the surfaces was determined by F-actin staining. Little to no epithelial cell growth occurred on the plain hydrogel surfaces throughout the 15-day culture period. Of the coated hydrogels, only the fibronectin-coated surfaces showed a significant increase in cell growth compared to plain hydrogels (p < 0.009). However, even these surfaces reached a maximum of only 20% confluence. Laminin, fibronectin adhesion-promoting peptide (FAP), and fibronectin/laminin (1:1) tether-modified hydrogels all achieved 100% confluence by the end of the culture period, although the rates at which confluence was reached differed. F-actin staining showed that focal adhesions were formed for the laminin, FAP, and fibronectin/laminin tether-modified surfaces. The results support the hypothesis that tethering certain extracellular matrix proteins and/or peptides to the hydrogel surface enhances epithelial cell growth and adhesion, compared with that seen for protein-coated or plain hydrogel surfaces.
10.1002/jbm.b.30131