AI总结:
Scan me!
共4篇 平均IF=3.75 (1.4-4.8)更多分析
  • 3区Q1影响因子: 3.8
    1. Quantitative phosphoproteomic analyses provide evidence for extensive phosphorylation of regulatory proteins in the rhizobia-legume symbiosis.
    期刊:Plant molecular biology
    日期:2019-04-15
    DOI :10.1007/s11103-019-00857-3
    KEY MESSAGE:Symbiotic nitrogen fixation in root nodules of grain legumes is essential for high yielding. Protein phosphorylation/dephosphorylation plays important role in root nodule development. Differences in the phosphoproteomes may either be developmental specific and related to nitrogen fixation activity. An iTRAQ-based quantitative phosphoproteomic analyses during nodule development enables identification of specific phosphorylation signaling in the Lotus-rhizobia symbiosis. During evolution, legumes (Fabaceae) have evolved a symbiotic relationship with rhizobia, which fix atmospheric nitrogen and produce ammonia that host plants can then absorb. Root nodule development depends on the activation of protein phosphorylation-mediated signal transduction cascades. To investigate possible molecular mechanisms of protein modulation during nodule development, we used iTRAQ-based quantitative proteomic analyses to identify root phosphoproteins during rhizobial colonization and infection of Lotus japonicus. 1154 phosphoproteins with 2957 high-confidence phosphorylation sites were identified. Gene ontology enrichment analysis of functional groups of these genes revealed that the biological processes mediated by these proteins included cellular processes, signal transduction, and transporter activity. Quantitative data highlighted the dynamics of protein phosphorylation during nodule development and, based on regulatory trends, seven groups were identified. RNA splicing and brassinosteroid (BR) signaling pathways were extensively affected by phosphorylation, and most Ser/Arg-rich (SR) proteins were multiply phosphorylated. In addition, many proposed kinase-substrate pairs were predicted, and in these MAPK6 substrates were found to be highly enriched. This study offers insights into the regulatory processes underlying nodule development, provides an accessible resource cataloging the phosphorylation status of thousands of Lotus proteins during nodule development, and develops our understanding of post-translational regulatory mechanisms in the Lotus-rhizobia symbiosis.
  • 2区Q1影响因子: 4.8
    跳转PDF
    2. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana.
    作者:Lassowskat Ines , Böttcher Christoph , Eschen-Lippold Lennart , Scheel Dierk , Lee Justin
    期刊:Frontiers in plant science
    日期:2014-10-20
    DOI :10.3389/fpls.2014.00554
    Mitogen-activated protein kinases (MAPKs) target a variety of protein substrates to regulate cellular signaling processes in eukaryotes. In plants, the number of identified MAPK substrates that control plant defense responses is still limited. Here, we generated transgenic Arabidopsis thaliana plants with an inducible system to simulate in vivo activation of two stress-activated MAPKs, MPK3, and MPK6. Metabolome analysis revealed that this artificial MPK3/6 activation (without any exposure to pathogens or other stresses) is sufficient to drive the production of major defense-related metabolites, including various camalexin, indole glucosinolate and agmatine derivatives. An accompanying (phospho)proteome analysis led to detection of hundreds of potential phosphoproteins downstream of MPK3/6 activation. Besides known MAPK substrates, many candidates on this list possess typical MAPK-targeted phosphosites and in many cases, the corresponding phosphopeptides were detected by mass spectrometry. Notably, several of these putative phosphoproteins have been reported to be associated with the biosynthesis of antimicrobial defense substances (e.g., WRKY transcription factors and proteins encoded by the genes from the "PEN" pathway required for penetration resistance to filamentous pathogens). Thus, this work provides an inventory of candidate phosphoproteins, including putative direct MAPK substrates, for future analysis of MAPK-mediated defense control. (Proteomics data are available with the identifier PXD001252 via ProteomeXchange, http://proteomecentral.proteomexchange.org).
  • 4区Q3影响因子: 1.4
    跳转PDF
    3. Dataset on post-translational modifications proteome analysis of MSP1-overexpressing rice leaf proteins.
    期刊:Data in brief
    日期:2023-09-13
    DOI :10.1016/j.dib.2023.109573
    The data reported here are associated with the article entitled "Analysis of Post-Translational Modification Dynamics Unveiled Novel Insights into Rice Responses to MSP1" [1]. pathogen-associated molecular pattern (PAMP) -triggered immunity (PTI) serves as the fundamental defense mechanism in plants, providing innate protection against pathogen invasion. The fungus () secretes MSP1, a protein recognized as a PAMP that induces PTI responses in rice. However, the comprehensive characterization of MSP1-induced post-translational modifications (PTMs) and their contribution to PTI responses remains elusive thus far. In this manuscript, we report the analysis of the phosphoproteome, ubiquitinome, and acetylproteome to investigate the alterations in MSP1-induced changes in these PTMs in MSP1 overexpressed and wild-type rice, utilizing the QExactive Orbitrap High-Resolution Mass Spectrometer [1]. Our data primarily focuses on unraveling the PTMs of MSP1-overexpressing transgenic rice, with the goal of elucidating MSP1-induced signaling cascades and deciphering their regulatory mechanisms.
  • 2区Q2影响因子: 3.7
    跳转PDF
    4. Genome-wide identification of the histone acetyltransferase gene family in Triticum aestivum.
    作者:Gao Shiqi , Li Linzhi , Han Xiaolei , Liu Tingting , Jin Peng , Cai Linna , Xu Miaoze , Zhang Tianye , Zhang Fan , Chen Jianping , Yang Jian , Zhong Kaili
    期刊:BMC genomics
    日期:2021-01-11
    DOI :10.1186/s12864-020-07348-6
    BACKGROUND:Histone acetylation is a ubiquitous and reversible post-translational modification in eukaryotes and prokaryotes that is co-regulated by histone acetyltransferase (HAT) and histone deacetylase (HDAC). HAT activity is important for the modification of chromatin structure in eukaryotic cells, affecting gene transcription and thereby playing a crucial regulatory role in plant development. Comprehensive analyses of HAT genes have been performed in Arabidopsis thaliana, Oryza sativa, barley, grapes, tomato, litchi and Zea mays, but comparable identification and analyses have not been conducted in wheat (Triticum aestivum). RESULTS:In this study, 31 TaHATs were identified and divided into six groups with conserved gene structures and motif compositions. Phylogenetic analysis was performed to predict functional similarities between Arabidopsis thaliana, Oryza sativa and Triticum aestivum HAT genes. The TaHATs appeared to be regulated by cis-acting elements such as LTR and TC-rich repeats. The qRT-PCR analysis showed that the TaHATs were differentially expressed in multiple tissues. The TaHATs in expression also responded to temperature changes, and were all significantly upregulated after being infected by barley streak mosaic virus (BSMV), Chinese wheat mosaic virus (CWMV) and wheat yellow mosaic virus (WYMV). CONCLUSIONS:These results suggest that TaHATs may have specific roles in the response to viral infection and provide a basis for further study of TaHAT functions in T. aestivum plant immunity.
logo logo
$!{favoriteKeywords}