Association between triglyceride glucose-body mass index and cardiovascular outcomes in patients undergoing percutaneous coronary intervention: a retrospective study.
Cardiovascular diabetology
BACKGROUND:The triglyceride glucose-body mass index (TyG-BMI index) has been considered a reliable surrogate measure of insulin resistance; however, its ability to predict the incidence of cardiovascular disease in individuals with coronary artery disease (CAD) remains uncertain. The aim of this study was to demonstrate the correlation between the TyG-BMI index and cardiovascular incidence. METHODS:A total of 2533 consecutive participants who underwent percutaneous coronary intervention (PCI) and drug-eluting stent (DES) implantation were included. Data from 1438 patients was analyzed in the study. The endpoint was defined as a composite of acute myocardial infarction, repeat revascularization, stroke, and all-cause mortality (major adverse cardiac and cerebrovascular events, MACCEs) at 34-month follow-up. The formula for calculating the TyG-BMI index is ln [fasting triglyceride (mg/dL) × fasting blood glucose (mg/dL)/2] × BMI. RESULTS:Among the 1438 participants, 195 incident patient cases of MACCEs were ascertained. The incidence of MACCEs showed no statistically significant differences in the TyG-BMI index tertiles in the overall population. Further exploratory subgroup analysis and multivariable logistic regression analysis revealed a linear relationship between the TyG-BMI index (per 1 SD increased) and MACCEs in the elderly patients (OR = 1.22, 95% CI 1.011-1.467, p = 0.038) and in the female patients (OR = 1.33, 95% CI 1.004-1.764, p = 0.047). The addition of the TyG-BMI index to traditional risk factor models in elderly and female patients did not improve risk prediction for MACCEs. CONCLUSION:A higher TyG-BMI index was proportionally related to an increased incidence of MACCEs in the elderly or female patients. However, the inclusion of the TyG-BMI index did not provide better predictive performance for MACCEs in the elderly, specifically in female patients.
10.1186/s12933-023-01794-8
The association between triglyceride-glucose index and its combination with obesity indicators and cardiovascular disease: NHANES 2003-2018.
Cardiovascular diabetology
BACKGROUND:In the American population, the relationship between the triglyceride-glucose (TyG) index and TYG combined with indicators of obesity and cardiovascular disease (CVD) and its mortality has been less well studied. METHODS:This cross-sectional study included 11,937 adults from the National Health and Nutrition Examination Survey (NHANES) 2003-2018. Cox proportional hazards model, binary logistic regression analyses, restricted cubic spline (RCS), and receiver operating characteristic (ROC) were used to analyze the relationship between TyG and its combined obesity-related indicators and CVD and its mortality. Mediation analysis explored the mediating role of glycated hemoglobin and insulin in the above relationships. RESULTS:In this study, except for no significant association between TyG and CVD mortality, TyG, TyG-WC, TyG-WHtR, and TyG-BMI were significantly and positively associated with CVD and CVD mortality. TyG-WHtR is the strongest predictor of CVD mortality (HR 1.66, 95% CI 1.21-2.29). The TyG index correlated better with the risk of coronary heart disease (OR 2.52, 95% CI 1.66-3.83). TyG-WC correlated best with total CVD (OR 2.37, 95% CI 1.77-3.17), congestive heart failure (OR 2.14, 95% CI 1.31-3.51), and angina pectoris (OR 2.38, 95% CI 1.43-3.97). TyG-WHtR correlated best with myocardial infarction (OR 2.24, 95% CI 1.45-3.44). RCS analyses showed that most of the above relationships were linear (P-overall < 0.0001, P-nonlinear > 0.05). Otherwise, ROC curves showed that TyG-WHtR and TyG-WC had more robust diagnostic efficacy than TyG. In mediation analyses, glycated hemoglobin mediated in all the above relationships and insulin-mediated in partial relationships. CONCLUSIONS:TyG-WC and TyG-WtHR enhance CVD mortality prediction, diagnostic efficacy of CVD and its mortality, and correlation with some CVD over and above the current hottest TyG. TyG-WC and TyG-WtHR are expected to become more effective metrics for identifying populations at early risk of cardiovascular disease and improve risk stratification.
10.1186/s12933-023-02115-9
Comparative study on the predictive value of TG/HDL-C, TyG and TyG-BMI indices for 5-year mortality in critically ill patients with chronic heart failure: a retrospective study.
Cardiovascular diabetology
BACKGROUND:The triglyceride glucose (TyG) index, TyG-body mass index (TyG-BMI), and triglyceride-density lipoprotein cholesterol ratio (TG/HDL-C) are substitute indicators for insulin resistance (IR). This study aimed to compare the predictive value of these indicators for 5-year mortality in critically ill patients with chronic heart failure (CHF). METHODS:Critically ill patients with CHF were identified from the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) III and IV databases. The primary outcome was 5-year mortality. The relationship between the three indices and mortality risk was determined using multivariate Cox proportional hazards models, Kaplan-Meier (K‒M) analysis and restricted cubic splines analysis. A receiver operating characteristic (ROC) curve was generated to compare the ability of the three indices to predict mortality. Finally, whether the IR indices would further increase the predictive ability of the basic model including baseline variables with a significance level between survivors and non-survivors was evaluated by ROC curve. RESULTS:Altogether, 1329 patients with CHF were identified from the databases. Cox proportional hazards models indicated that the TyG index was independently associated with an elevated risk of 5-year mortality (hazard ratio [HR], 1.56; 95% confidence interval [CI] 1.29-1.9), while the TyG-BMI index and TG/HDL-C level were significantly associated with 5-year mortality, with an HR (95% CI) of 1.002 (1.000-1.003) and 1.01 (1.00-1.03), respectively. The K-M analysis revealed that the cumulative incidence of all-cause 5-year death increased with increasing quartiles of the TyG index, TyG-BMI index, or TG/HDL-C ratio. According to the ROC curve, the TyG index outperformed the TyG-BMI and TG/HDL-C ratio at predicting all-cause 5-year mortality (0.608 [0.571-0.645] vs. 0.558 [0.522-0.594] vs. 0.561 [0.524-0.598]). The effect of the TyG index on all-cause mortality was consistent across subgroups, with no significant interaction with randomized factors. Furthermore, adding the TyG index to the basic model for 5-year mortality improved its predictive ability (area under the curve, 0.762 for the basic model vs. 0.769 for the basic model + TyG index); however, the difference was not statistically significant. CONCLUSION:As continuous variables, all three indices were significantly associated with 5-year mortality risk in critically ill patients with CHF. Although these IR indices did not improve the predictive power of the basic model in patients with CHF, the TyG index appears to be the most promising index (vs. TyG-BMI and TG/HDL-C ratio) for prevention and risk stratification in critically ill patients with CHF.
10.1186/s12933-024-02308-w