logo logo
Osteocalcin attenuates oligodendrocyte differentiation and myelination via GPR37 signaling in the mouse brain. Science advances The bone-derived hormone osteocalcin (OCN) is crucial for brain development and neural cognitive functions, yet the exact roles of OCN in central nervous system (CNS) remain elusive. Here, we find that genetic deletion of facilitates oligodendrocyte (OL) differentiation and hypermyelination in the CNS. Although dispensable for the proliferation of oligodendrocyte precursor cells (OPCs), OCN is critical for the myelination of OLs, which affects myelin production and remyelination after demyelinating injury. Genome-wide RNA sequencing analyses reveal that OCN regulates a number of G protein–coupled receptors and myelination-associated transcription factors, of which might be a key downstream effector in OLs. GPR37 is identified as a previously unknown receptor for OCN, thus regulating OL differentiation and CNS myelination. Overall, these findings suggest that OCN orchestrates the transition between OPCs and myelinating OLs via GPR37 signaling, and hence, the OCN/GPR37 pathway regulates myelin homeostasis in the CNS. 10.1126/sciadv.abi5811
Oligodendrocyte lineage cells and depression. Molecular psychiatry Depression is a common mental illness, affecting more than 300 million people worldwide. Decades of investigation have yielded symptomatic therapies for this disabling condition but have not led to a consensus about its pathogenesis. There are data to support several different theories of causation, including the monoamine hypothesis, hypothalamic-pituitary-adrenal axis changes, inflammation and immune system alterations, abnormalities of neurogenesis and a conducive environmental milieu. Research in these areas and others has greatly advanced the current understanding of depression; however, there are other, less widely known theories of pathogenesis. Oligodendrocyte lineage cells, including oligodendrocyte progenitor cells and mature oligodendrocytes, have numerous important functions, which include forming myelin sheaths that enwrap central nervous system axons, supporting axons metabolically, and mediating certain forms of neuroplasticity. These specialized glial cells have been implicated in psychiatric disorders such as depression. In this review, we summarize recent findings that shed light on how oligodendrocyte lineage cells might participate in the pathogenesis of depression, and we discuss new approaches for targeting these cells as a novel strategy to treat depression. 10.1038/s41380-020-00930-0
Oligodendrocytes: biology and pathology. Acta neuropathologica Oligodendrocytes are the myelinating cells of the central nervous system (CNS). They are the end product of a cell lineage which has to undergo a complex and precisely timed program of proliferation, migration, differentiation, and myelination to finally produce the insulating sheath of axons. Due to this complex differentiation program, and due to their unique metabolism/physiology, oligodendrocytes count among the most vulnerable cells of the CNS. In this review, we first describe the different steps eventually culminating in the formation of mature oligodendrocytes and myelin sheaths, as they were revealed by studies in rodents. We will then show differences and similarities of human oligodendrocyte development. Finally, we will lay out the different pathways leading to oligodendrocyte and myelin loss in human CNS diseases, and we will reveal the different principles leading to the restoration of myelin sheaths or to a failure to do so. 10.1007/s00401-009-0601-5
Molecular Control of Oligodendrocyte Development. Elbaz Benayahu,Popko Brian Trends in neurosciences Myelin is a multilayer lipid membrane structure that wraps and insulates axons, allowing for the efficient propagation of action potentials. During developmental myelination of the central nervous system (CNS), oligodendrocyte progenitor cells (OPCs) proliferate and migrate to their final destination, where they terminally differentiate into mature oligodendrocytes and myelinate axons. Lineage progression and terminal differentiation of oligodendrocyte lineage cells are under tight transcriptional and post-transcriptional control. The characterization of several recently identified regulatory factors that govern these processes, which are the focus of this review, has greatly increased our understanding of oligodendrocyte development and function. These insights are critical to facilitate efforts to enhance OPC differentiation in neurological disorders that disrupt CNS myelin. 10.1016/j.tins.2019.01.002