Multifunctional Nanoparticle-Loaded Injectable Alginate Hydrogels with Deep Tumor Penetration for Enhanced Chemo-Immunotherapy of Cancer.
ACS nano
Chemo-immunotherapy has become a promising strategy for cancer treatment. However, the inability of the drugs to penetrate deeply into the tumor and form potent tumor vaccines in vivo severely restricts the antitumor effect of chemo-immunotherapy. In this work, an injectable sodium alginate platform is reported to promote penetration of the chemotherapeutic doxorubicin (DOX) and delivery of personalized tumor vaccines. The injectable multifunctional sodium alginate platform cross-links rapidly in the presence of physiological concentrations of Ca, forming a hydrogel that acts as a drug depot and releases loaded hyaluronidase (HAase), DOX, and micelles (IP-NPs) slowly and sustainedly. By degrading hyaluronic acid (HA) overexpressed in tumor tissue, HAase can make tumor tissue "loose" and favor other components to penetrate deeply. DOX induces potent immunogenic cell death (ICD) and produces tumor-associated antigens (TAAs), which could be effectively captured by polyethylenimine (PEI) coated IP-NPs micelles and form personalized tumor vaccines. The vaccines efficaciously facilitate the maturation of dendritic cells (DCs) and activation of T lymphocytes, thus producing long-term immune memory. Imiquimod (IMQ) loaded in the core could further activate the immune system and trigger a more robust antitumor immune effect. Hence, the research proposes a multifunctional drug delivery platform for the effective treatment of colorectal cancer.
10.1021/acsnano.4c04766
Injectable Nanocomposite Hydrogels Improve Intraperitoneal Co-delivery of Chemotherapeutics and Immune Checkpoint Inhibitors for Enhanced Peritoneal Metastasis Therapy.
ACS nano
Intraperitoneal co-delivery of chemotherapeutic drugs (CDs) and immune checkpoint inhibitors (ICIs) brings hope to improve treatment outcomes in patients with peritoneal metastasis from ovarian cancer (OC). However, current intraperitoneal drug delivery systems face issues such as rapid drug clearance from lymphatic drainage, heterogeneous drug distribution, and uncontrolled release of therapeutic agents into the peritoneal cavity. Herein, we developed an injectable nanohydrogel by combining carboxymethyl chitosan (CMCS) with bioadhesive nanoparticles (BNPs) based on polylactic acid-hyperbranched polyglycerol. This system enables the codelivery of CD and ICI into the intraperitoneal space to extend drug retention. The nanohydrogel is formed by cross-linking of aldehyde groups on BNPs with amine groups on CMCS via reversible Schiff base bonds, with CD and ICI loaded separately into BNPs and CMCS network. BNP/CMCS nanohydrogel maintained the activity of the biomolecules and released drugs in a sustained manner over a 7 day period. The adhesive property, through the formation of Schiff bases with peritoneal tissues, confers BNPs with an extended residence time in the peritoneal cavity after being released from the nanohydrogel. In a mouse model, BNP/CMCS nanohydrogel loaded with paclitaxel (PTX) and anti-PD-1 antibodies (αPD-1) significantly suppressed peritoneal metastasis of OC compared to all other tested groups. In addition, no systemic toxicity of nanohydrogel-loaded PTX and αPD-1 was observed during the treatment, which supports potential translational applications of this delivery system.
10.1021/acsnano.4c02312