logo logo
Nuclear factor κB overactivation in the intervertebral disc leads to macrophage recruitment and severe disc degeneration. Science advances Persistent inflammation has been associated with severe disc degeneration (DD). This study investigated the effect of prolonged nuclear factor κB (NF-κB) activation in DD. Using an inducible mouse model, we genetically targeted cells expressing aggrecan, a primary component of the disc extra cellular matrix, for activation of the canonical NF-κB pathway. Prolonged NF-κB activation led to severe structural degeneration accompanied by increases in gene expression of inflammatory molecules (, , , and ), chemokines ( and ), and catabolic enzymes (, , and ). Increased recruitment of proinflammatory (F4/80,CD38) and inflammatory resolving (F4/80,CD206) macrophages was observed within caudal discs. We found that the secretome of inflamed caudal disc cells increased macrophage migration and inflammatory activation. Lumbar discs did not exhibit phenotypic changes, suggestive of regional spinal differences in response to inflammatory genetic overactivation. Results suggest prolonged NF-κB activation can induce severe DD through increases in inflammatory cytokines, chemotactic proteins, catabolic enzymes, and the recruitment and activation of macrophage cell populations. 10.1126/sciadv.adj3194
Tissue Engineering of Human Intervertebral Disc: A Concise Review. Tissue engineering. Part B, Reviews Intervertebral disc (IVD) represents a structure of crucial structural and functional importance for human spine. Pathology of IVD institutes a frequently encountered condition in current clinical practice. Degenerative disc disease (DDD), the principal clinical representative of IVD pathology, constitutes an increasingly diagnosed spinal disorder associated with substantial morbidity and mortality in recent years. Despite the considerable incidence and socioeconomic burden of DDD, existing treatment modalities including conservative and surgical methods have been demonstrated to provide a limited therapeutic effect, being not capable of interrupting or reversing natural progress of underlying disease. These limitations underline the requirement for development of novel, innovative, and more effective therapeutic strategies for DDD management. Within this literature framework, compromised IVD replacement with a viable IVD construct manufactured with tissue-engineering (TE) methods has been recommended as a promising therapeutic strategy for DDD. Existing preliminary preclinical data demonstrate that proper combination of cells from various sources, different scaffold materials, and appropriate signaling molecules renders manufacturing of whole-IVD tissue-engineered constructs a technically feasible process. The aim of this narrative review was to critically summarize current published evidence regarding particular aspects of IVD-TE, primarily emphasizing in providing researchers in this field with practicable knowledge to enhance clinical translatability of their research and informing clinical practitioners about the features and capabilities of innovative TE science in the field of IVD-TE. Impact Statement Human intervertebral disc (IVD) pathology represents an extremely frequent condition in current clinical practice. Given the considerable limitations of available treatment options, deployment of novel and groundbreaking therapeutic modalities constitutes a rather urgent need. Tissue engineering of entire human IVD, a technically feasible process within laboratory framework, is theoretically capable of overcoming limitations that characterize currently applied therapeutic measures. Optimization of laboratory manufacturing techniques in conjunction with more diligent evaluation of tissue-engineered constructs are expected to lay the foundations for clinical trials initiation. 10.1089/ten.TEB.2021.0090
Tissue physiology revolving around the clock: circadian rhythms as exemplified by the intervertebral disc. Morris Honor,Gonçalves Cátia F,Dudek Michal,Hoyland Judith,Meng Qing-Jun Annals of the rheumatic diseases Circadian clocks in the brain and peripheral tissues temporally coordinate local physiology to align with the 24 hours rhythmic environment through light/darkness, rest/activity and feeding/fasting cycles. Circadian disruptions (during ageing, shift work and jet-lag) have been proposed as a risk factor for degeneration and disease of tissues, including the musculoskeletal system. The intervertebral disc (IVD) in the spine separates the bony vertebrae and permits movement of the spinal column. IVD degeneration is highly prevalent among the ageing population and is a leading cause of lower back pain. The IVD is known to experience diurnal changes in loading patterns driven by the circadian rhythm in rest/activity cycles. In recent years, emerging evidence indicates the existence of molecular circadian clocks within the IVD, disruption to which accelerates tissue ageing and predispose animals to IVD degeneration. The cell-intrinsic circadian clocks in the IVD control key aspects of physiology and pathophysiology by rhythmically regulating the expression of ~3.5% of the IVD transcriptome, allowing cells to cope with the drastic biomechanical and chemical changes that occur throughout the day. Indeed, epidemiological studies on long-term shift workers have shown an increased incidence of lower back pain. In this review, we summarise recent findings of circadian rhythms in health and disease, with the IVD as an exemplar tissue system. We focus on rhythmic IVD functions and discuss implications of utilising biological timing mechanisms to improve tissue health and mitigate degeneration. These findings may have broader implications in chronic rheumatic conditions, given the recent findings of musculoskeletal circadian clocks. 10.1136/annrheumdis-2020-219515
Catalytic Nanodots-Driven Pyroptosis Suppression in Nucleus Pulposus for Antioxidant Intervention of Intervertebral Disc Degeneration. Advanced materials (Deerfield Beach, Fla.) Low back pain resulting from intervertebral disc degeneration (IVDD) is a prevalent global concern; however, its underlying mechanism remains elusive. Single-cell sequencing analyses revealed the critical involvement of pyroptosis in IVDD. Considering the involvement of reactive oxygen species (ROS) as the primary instigator of pyroptosis and the lack of an efficient intervention approach, this study developed carbonized Mn-containing nanodots (MCDs) as ROS-scavenging catalytic biomaterials to suppress pyroptosis of nucleus pulposus (NP) cells to efficiently alleviate IVDD. Catalytic MCDs have superior efficacy in scavenging intracellular ROS and rescuing homeostasis in the NP microenvironment compared with N-acetylcysteine, a classical antioxidant. The data validates that pyroptosis plays a vital role in mediating the protective effects of catalytic MCDs against oxidative stress. Systematic in vivo assessments substantiate the effectiveness of MCDs in rescuing a puncture-induced IVDD rat model, further demonstrating their ability to suppress pyroptosis. This study highlights the potential of antioxidant catalytic nanomedicine as a pyroptosis inhibitor and mechanistically unveils an efficient strategy for the treatment of IVDD. 10.1002/adma.202313248
Disassembly of the TRIM56-ATR complex promotes cytoDNA/cGAS/STING axis-dependent intervertebral disc inflammatory degeneration. The Journal of clinical investigation As the leading cause of disability worldwide, low back pain (LBP) is recognized as a pivotal socioeconomic challenge to the aging population and is largely attributed to intervertebral disc degeneration (IVDD). Elastic nucleus pulposus (NP) tissue is essential for the maintenance of IVD structural and functional integrity. The accumulation of senescent NP cells with an inflammatory hypersecretory phenotype due to aging and other damaging factors is a distinctive hallmark of IVDD initiation and progression. In this study, we reveal a mechanism of IVDD progression in which aberrant genomic DNA damage promoted NP cell inflammatory senescence via activation of the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) axis but not of absent in melanoma 2 (AIM2) inflammasome assembly. Ataxia-telangiectasia-mutated and Rad3-related protein (ATR) deficiency destroyed genomic integrity and led to cytosolic mislocalization of genomic DNA, which acted as a powerful driver of cGAS/STING axis-dependent inflammatory phenotype acquisition during NP cell senescence. Mechanistically, disassembly of the ATR-tripartite motif-containing 56 (ATR-TRIM56) complex with the enzymatic liberation of ubiquitin-specific peptidase 5 (USP5) and TRIM25 drove changes in ATR ubiquitination, with ATR switching from K63- to K48-linked modification, c thereby promoting ubiquitin-proteasome-dependent dynamic instability of ATR protein during NP cell senescence progression. Importantly, an engineered extracellular vesicle-based strategy for delivering ATR-overexpressing plasmid cargo efficiently diminished DNA damage-associated NP cell senescence and substantially mitigated IVDD progression, indicating promising targets and effective approaches to ameliorate the chronic pain and disabling effects of IVDD. 10.1172/JCI165140
Tension-activated nanofiber patches delivering an anti-inflammatory drug improve repair in a goat intervertebral disc herniation model. Science translational medicine Conventional microdiscectomy treatment for intervertebral disc herniation alleviates pain but does not repair the annulus fibrosus, resulting in a high incidence of recurrent herniation and persistent dysfunction. The lack of repair and the acute inflammation that arise after injury can further compromise the disc and result in disc-wide degeneration in the long term. To address this clinical need, we developed tension-activated repair patches (TARPs) for annulus fibrosus repair and local delivery of the anti-inflammatory factor anakinra (a recombinant interleukin-1 receptor antagonist). TARPs transmit physiologic strain to mechanically activated microcapsules embedded within the patch, which release encapsulated bioactive molecules in direct response to spinal loading. Mechanically activated microcapsules carrying anakinra were loaded into TARPs, and the effects of TARP-mediated annular repair and anakinra delivery were evaluated in a goat model of annular injury in the cervical spine. TARPs integrated with native tissue and provided structural reinforcement at the injury site that prevented aberrant disc-wide remodeling resulting from detensioning of the annular fibrosus. The delivery of anakinra by TARP implantation increased matrix deposition and retention at the injury site and improved maintenance of disc extracellular matrix. Anakinra delivery additionally attenuated the inflammatory response associated with TARP implantation, decreasing osteolysis in adjacent vertebrae and preserving disc cellularity and matrix organization throughout the annulus fibrosus. These results demonstrate the therapeutic potential of TARPs for the treatment of intervertebral disc herniation. 10.1126/scitranslmed.adf1690
A Redox Homeostasis Modulatory Hydrogel with GLRX3 Extracellular Vesicles Attenuates Disc Degeneration by Suppressing Nucleus Pulposus Cell Senescence. ACS nano Characterized by nucleus pulposus (NP) cell senescence and extracellular matrix (ECM) degradation, disc degeneration is a common pathology for various degenerative spinal disorders. To date, effective treatments for disc degeneration are absent. Here, we found that Glutaredoxin3 (GLRX3) is an important redox-regulating molecule associated with NP cell senescence and disc degeneration. Using a hypoxic preconditioning method, we developed GLRX3 mesenchymal stem cell-derived extracellular vehicles (EVs-GLRX3), which enhanced the cellular antioxidant defense, thus preventing reactive oxygen species (ROS) accumulation and senescence cascade expansion . Further, a disc tissue-like biopolymer-based supramolecular hydrogel, which was injectable, degradable, and ROS-responsive, was proposed to deliver EVs-GLRX3 for treating disc degeneration. Using a rat model of disc degeneration, we demonstrated that the EVs-GLRX3-loaded hydrogel attenuated mitochondrial damage, alleviated the NP senescence state, and restored ECM deposition by modulating the redox homeostasis. Our findings suggested that modulation of redox homeostasis in the disc can rejuvenate NP cell senescence and thus attenuate disc degeneration. 10.1021/acsnano.3c01713
Mitochondrial-Targeted Metal-Phenolic Nanoparticles to Attenuate Intervertebral Disc Degeneration: Alleviating Oxidative Stress and Mitochondrial Dysfunction. ACS nano As intervertebral disc degeneration (IVDD) proceeds, the dysfunctional mitochondria disrupt the viability of nucleus pulposus cells, initiating the degradation of the extracellular matrix. To date, there is a lack of effective therapies targeting the mitochondria of nucleus pulposus cells. Here, we synthesized polygallic acid-manganese (PGA-Mn) nanoparticles via self-assembly polymerization of gallic acid in an aqueous medium and introduced a mitochondrial targeting peptide (TP04) onto the nanoparticles using a Schiff base linkage, resulting in PGA-Mn-TP04 nanoparticles. With a size smaller than 50 nm, PGA-Mn-TP04 possesses pH-buffering capacity, avoiding lysosomal confinement and selectively accumulating within mitochondria through electrostatic interactions. The rapid electron exchange between manganese ions and gallic acid enhances the redox capability of PGA-Mn-TP04, effectively reducing mitochondrial damage caused by mitochondrial reactive oxygen species. Moreover, PGA-Mn-TP04 restores mitochondrial function by facilitating the fusion of mitochondria and minimizing their fission, thereby sustaining the vitality of nucleus pulposus cells. In the rat IVDD model, PGA-Mn-TP04 maintained intervertebral disc height and nucleus pulposus tissue hydration. It offers a nonoperative treatment approach for IVDD and other skeletal muscle diseases resulting from mitochondrial dysfunction, presenting an alternative to traditional surgical interventions. 10.1021/acsnano.3c12163
Magnetically attracting hydrogel reshapes iron metabolism for tissue repair. Science advances Ferroptosis, caused by disorders of iron metabolism, plays a critical role in various diseases, making the regulation of iron metabolism essential for tissue repair. In our analysis of degenerated intervertebral disc tissue, we observe a positive correlation between the concentration of extracellular iron ions (ex-iron) and the severity of ferroptosis in intervertebral disc degeneration (IVDD). Hence, inspired by magnets attracting metals, we combine polyether F127 diacrylate (FDA) with tannin (TA) to construct a magnetically attracting hydrogel (FDA-TA). This hydrogel demonstrates the capability to adsorb ex-iron and remodel the iron metabolism of cells. Furthermore, it exhibits good toughness and self-healing properties. Notably, it can activate the PI3K-AKT pathway to inhibit nuclear receptor coactivator 4-mediated ferritinophagy under ex-iron enrichment conditions. The curative effect and related mechanism are further confirmed in vivo. Consequently, on the basis of the pathological mechanism, a targeted hydrogel is designed to reshape iron metabolism, offering insights for tissue repair. 10.1126/sciadv.ado7249
Intervertebral disc human nucleus pulposus cells associated with back pain trigger neurite outgrowth in vitro and pain behaviors in rats. Science translational medicine Low back pain (LBP) is often associated with the degeneration of human intervertebral discs (IVDs). However, the pain-inducing mechanism in degenerating discs remains to be elucidated. Here, we identified a subtype of locally residing human nucleus pulposus cells (NPCs), generated by certain conditions in degenerating discs, that was associated with the onset of discogenic back pain. Single-cell transcriptomic analysis of human tissues showed a strong correlation between a specific cell subtype and the pain condition associated with the human degenerated disc, suggesting that they are pain-triggering. The application of IVD degeneration-associated exogenous stimuli to healthy NPCs in vitro recreated a pain-associated phenotype. These stimulated NPCs activated functional human iPSC-derived sensory neuron responses in an in vitro organ-chip model. Injection of stimulated NPCs into the healthy rat IVD induced local inflammatory responses and increased cold sensitivity and mechanical hypersensitivity. Our findings reveal a previously uncharacterized pain-inducing mechanism mediated by NPCs in degenerating IVDs. These findings could aid in the development of NPC-targeted therapeutic strategies for the clinically unmet need to attenuate discogenic LBP. 10.1126/scitranslmed.adg7020
Engineering Extracellular Vesicles Restore the Impaired Cellular Uptake and Attenuate Intervertebral Disc Degeneration. Liao Zhiwei,Liu Hui,Ma Liang,Lei Jie,Tong Bide,Li Gaocai,Ke Wencan,Wang Kun,Feng Xiaobo,Hua Wenbin,Li Shuai,Yang Cao ACS nano Extracellular vesicles (EVs) are potential alternatives for mesenchymal stem cells (MSCs) in the treatment of musculoskeletal degenerative diseases, including intervertebral disc degeneration (IDD). Usually, EVs are internalized and then deliver bioactive molecules that impart phenotypic changes in recipient cells. For effective utilization of EVs in the IDD therapy, understanding the mechanism of EV uptake is of vital importance. In this study, we found that EVs delivered antioxidant proteins to protect against pyroptosis of nucleus pulposus cells (NPCs). In particular, the therapeutic effect of EVs decreased in TNF-α-treated NPCs due to the impaired caveolae-mediated endocytosis pathway. Transcriptome sequencing and functional verification revealed that caveolae associated protein 2 (Cavin-2) played an important role in the uptake process of EVs. We then constructed the Cavin-2-modified engineering EVs the gene-editing of parental MSCs. These kinds of modified EVs presented an improved uptake rate in TNF-α-treated NPCs, which effectively ameliorated the cell death of NPCs in a three-dimensional hydrogel culture model and retarded the progression of IDD in the organ culture model. Collectively, these findings illustrate the mechanism of EV uptake in NPCs and explore the application of engineering EVs in the treatment of IDD. 10.1021/acsnano.1c04514
p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle. Che Hui,Li Jie,Li You,Ma Cheng,Liu Huan,Qin Jingyi,Dong Jianghui,Zhang Zhen,Xian Cory J,Miao Dengshun,Wang Liping,Ren Yongxin eLife The cell cycle regulator p16 is known as a biomarker and an effector of aging. However, its function in intervertebral disc degeneration (IVDD) is unclear. In this study, p16 expression levels were found to be positively correlated with the severity of human IVDD. In a mouse tail suspension (TS)-induced IVDD model, lumbar intervertebral disc height index and matrix protein expression levels were reduced significantly were largely rescued by p16 deletion. In TS mouse discs, reactive oxygen species levels, proportions of senescent cells, and the senescence-associated secretory phenotype (SASP) were all increased, cell cycling was delayed, and expression was downregulated for Sirt1, superoxide dismutase 1/2, cyclin-dependent kinases 4/6, phosphorylated retinoblastoma protein, and transcription factor E2F1/2. However, these effects were rescued by p16 deletion. Our results demonstrate that p16 plays an important role in IVDD pathogenesis and that its deletion attenuates IVDD by promoting cell cycle and inhibiting SASP, cell senescence, and oxidative stress. 10.7554/eLife.52570
Circadian Clock Regulation via Biomaterials for Nucleus Pulposus. Advanced materials (Deerfield Beach, Fla.) Circadian clock disorder during tissue degeneration has been considered the potential pathogenesis for various chronic diseases, such as intervertebral disc degeneration (IVDD). In this study, circadian clock-regulating biomaterials (ClockMPs) that can effectively activate the intrinsic circadian clock of nucleus pulposus cells (NPCs) in IVDD and improve the physiological function of NPCs for disc regeneration are fabricated via air-microfluidic technique and the chemical cross-linking between polyvinyl alcohol and modified-phenylboronic acid. In vitro experiments verified that ClockMPs can scavenge reactive oxygen species to maintain a stable microenvironment for the circadian clock by promoting the binding of BMAL1 and CLOCK proteins. ClockMPs can regulate the expression of core circadian clock genes by activating the PI3K-AKT pathway in NPCs to remodel the intrinsic circadian clock and promote extracellular matrix synthesis. Furthermore, in vivo experiments of IVDD treated with ClockMPs proved that ClockMPs can promote disc regeneration by regulating the circadian clock of NPCs. In conclusion, ClockMPs provided a novel and promising strategy for circadian clock regulation during tissue regeneration. 10.1002/adma.202301037