logo logo
HtrA1L364P leads to cognitive dysfunction and vascular destruction through TGF-β/Smad signaling pathway in CARASIL model mice. Brain and behavior AIMS:Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is a life-threatening, inherited, nonhypertensive arteriole disease of the brain. Therapeutic strategy for CARASIL is limited because its pathogenesis is not clear. We previously reported the first family with CARASIL in China, which involves a high-temperature requirement serine protease gene mutation (HtrA1 ). Based on this previous study, we constructed a CARASIL mouse model (Mut-hHtrA1 mouse, hereinafter referred to as Mut). This paper aimed to systematically study the behavior, pathology, and molecular biology of Mut mice and explore the pathogenesis and possible therapeutic strategies of CARASIL. METHODS:Food maze and water maze experiments were used in the behavioral studies. Pathological studies were carried out by arteriole labeling staining and electron microscopy. The mRNA and protein expression levels of the key factors of TGF-β/Smad signaling pathway (TGF-β, Smad2, Smad3, and Smad4) in the brain of the model mice were detected by immunohistochemistry, real-time quantitative polymerase chain reaction (RT-PCR), and Western blot assay. RESULTS:The food maze and water maze experiment data showed significant differences between the Mut and wild-type (WT) mice in the first time to find food, the time to contact the escape table for the first time, and the number of times to travel in the escape table quadrant (p < 0.001). The results of vascular labeling staining showed that some small arteries in the brain of Mut mice lost normal structure. The results of electron microscopy showed that the cell morphologies in the cortex and hippocampus of Mut mice were abnormal; the number of synapses was reduced; the walls of capillaries, venules, and arterioles thickened; lumen stenosis and other abnormal phenomenon occurred; and lipofuscin deposition and autophagosomes were found in the hippocampus. Immunohistochemistry, RT-PCR, and Western Blot results showed that the mRNA and protein expression levels of TGF-β, Smad2, and Smad3 in the brain of Mut mice increased to different degrees. CONCLUSIONS:The most significant innovation of this study is the first study on the pathogenesis of CARASIL disease using model animals. The Mut mice can well simulate the pathogenesis of CARASIL in behavioral and pathological aspects. The TGF-β/Smad signaling pathway, which is involved in the pathogenesis of CARASIL, is abnormally upregulated in the brain of Mut mice. 10.1002/brb3.2691
Induced pluripotent stem cell model revealed impaired neurovascular interaction in genetic small vessel disease Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy. Frontiers in cellular neuroscience Introduction:Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is the most common genetic small vessel disease caused by variants in the gene. Patients with CADASIL experience recurrent strokes, developing into cognitive defect and vascular dementia. CADASIL is a late-onset vascular condition, but migraine and brain MRI lesions appear in CADASIL patients as early as their teens and twenties, suggesting an abnormal neurovascular interaction at the neurovascular unit (NVU) where microvessels meet the brain parenchyma. Methods:To understand the molecular mechanisms of CADASIL, we established induced pluripotent stem cell (iPSC) models from CADASIL patients and differentiated the iPSCs into the major NVU cell types including brain microvascular endothelial-like cells (BMECs), vascular mural cells (MCs), astrocytes and cortical projection neurons. We then built an NVU model by co-culturing different neurovascular cell types in Transwells and evaluated the blood brain barrier (BBB) function by measuring transendothelial electrical resistance (TEER). Results:Results showed that, while the wild-type MCs, astrocytes and neurons could all independently and significantly enhance TEER of the iPSC-BMECs, such capability of MCs from iPSCs of CADASIL patients was significantly impaired. Additionally, the barrier function of the BMECs from CADASIL iPSCs was significantly decreased, accompanied with disorganized tight junctions in iPSC-BMECs, which could not be rescued by the wild-type MCs or sufficiently rescued by the wild-type astrocytes and neurons. Discussion:Our findings provide new insight into early disease pathologies on the neurovascular interaction and BBB function at the molecular and cellular levels for CADASIL, which helps inform future therapeutic development. 10.3389/fncel.2023.1195470
The emerging role of the HTRA1 protease in brain microvascular disease. Frontiers in dementia Pathologies of the brain microvasculature, often referred to as cerebral small-vessel disease, are important contributors to vascular dementia, the second most common form of dementia in aging societies. In addition to their role in acute ischemic and hemorrhagic stroke, they have emerged as major cause of age-related cognitive decline in asymptomatic individuals. A central histological finding in these pathologies is the disruption of the vessel architecture including thickening of the vessel wall, narrowing of the vessel lumen and massive expansion of the mural extracellular matrix. The underlying molecular mechanisms are largely unknown, but from the investigation of several disease forms with defined etiology, high temperature requirement protein A1 (HTRA1), a secreted serine protease degrading primarily matrisomal substrates, has emerged as critical factor and potential therapeutic target. A genetically induced loss of HTRA1 function in humans is associated with cerebral autosomal-recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), a rare, hereditary form of brain microvascular disease. Recently, proteomic studies on cerebral amyloid angiopathy (CAA), a common cause of age-related dementia, and cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most prevalent monogenic small-vessel disease, have provided evidence for an impairment of HTRA1 activity through sequestration into pathological protein deposits, suggesting an alternative mechanism of HTRA1 inactivation and expanding the range of diseases with HTRA1 involvement. Further investigations of the mechanisms of HTRA1 regulation in the brain microvasculature might spawn novel strategies for the treatment of small-vessel pathologies. 10.3389/frdem.2023.1146055
Combined Transcriptomic and Proteomic Analyses of Cerebral Frontal Lobe Tissue Identified RNA Metabolism Dysregulation as One Potential Pathogenic Mechanism in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL). Ritz Marie-Françoise,Jenoe Paul,Bonati Leo,Engelter Stefan,Lyrer Philippe,Peters Nils Current neurovascular research BACKGROUND:Cerebral small vessel disease (SVD) is an important cause of stroke and vascular cognitive impairment (VCI), leading to subcortical ischemic vascular dementia. As a hereditary form of SVD with early onset, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) represents a pure form of SVD and may thus serve as a model disease for SVD. To date, underlying molecular mechanisms linking vascular pathology and subsequent neuronal damage in SVD are incompletely understood. OBJECTIVE:We performed comparative transcriptional profiling microarray and proteomic analyses on post-mortem frontal lobe specimen from 2 CADASIL patients and 5 non neurologically diseased controls in order to identify dysregulated pathways potentially involved in the development of tissue damage in CADASIL. METHODS:Transcriptional microarray analysis of material extracted from frontal grey and white matter (WM) identified subsets of up- or down-regulated genes enriched into biological pathways mostly in WM areas. Proteomic analysis of these regions also highlighted cellular processes identified by dysregulated proteins. RESULTS:Discrepancies between proteomic and transcriptomic data were observed, but a number of pathways were commonly associated with genes and corresponding proteins, such as: "ribosome" identified by upregulated genes and proteins in frontal cortex or "spliceosome" associated with down-regulated genes and proteins in frontal WM. CONCLUSION:This latter finding suggests that defective expression of spliceosomal components may alter widespread splicing profile, potentially inducing expression abnormalities that could contribute to cerebral WM damage in CADASIL. 10.2174/1567202616666191023111059
CADASIL: new advances in basic science and clinical perspectives. Current opinion in hematology PURPOSE OF REVIEW:Recent advances in genetic evaluation improved the identification of several variants in the NOTCH3 gene causing Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL). Despite improved diagnosis, the disease mechanism remains an elusive target and an increasing number of scientific/clinical groups are investigating CADASIL to better understand it. The purpose of this review is to summarize the current knowledge in CADASIL. RECENT FINDINGS:CADASIL is a genotypically and phenotypically diverse condition involving multiple molecular systems affecting small blood vessels. Cerebral white matter changes observed by MRI are a key CADASIL characteristic in young adult patients often before severe symptoms and trigger NOTCH3 genetic testing. NOTCH3 mutation locations are highly variable, correlate to disease severity and consistently affect the cysteine balance within extracellular Notch3. Granular osmiophilic material deposits around blood vessels are also a unique CADASIL feature and appear to have a role in sequestering proteins that are essential for blood vessel homeostasis. As potential biomarkers and therapeutic targets are being actively investigated, neurofilament light chain can be detected in patient serum and may be a promising circulating biomarker. SUMMARY:CADASIL is a complex, devastating disease with unknown mechanism and no treatment options. As we increase our understanding of CADASIL, translational research bridging basic science and clinical findings needs to drive biomarker and therapeutic target discovery. 10.1097/MOH.0000000000000497
Progress in the Study of the Role and Mechanism of HTRA1 in Diseases Related to Vascular Abnormalities. International journal of general medicine High temperature requirement A1 (HTRA1) is a member of the serine protease family, comprising four structural domains: IGFBP domain, Kazal domain, protease domain and PDZ domain. HTRA1 encodes a serine protease, a secreted protein that is widely expressed in the vasculature. HTRA1 regulates a wide range of physiological processes through its proteolytic activity, and is also involved in a variety of vascular abnormalities-related diseases. This article reviews the role of HTRA1 in the development of vascular abnormalities-related hereditary cerebral small vessel disease (CSVD), age-related macular degeneration (AMD), tumors and other diseases. Through relevant research advances to understand the role of HTRA1 in regulating signaling pathways or refolding, translocation, degradation of extracellular matrix (ECM) proteins, thus directly or indirectly regulating angiogenesis, vascular remodeling, and playing an important role in vascular homeostasis, further understanding the mechanism of HTRA1's role in vascular abnormality-related diseases is important for HTRA1 to be used as a therapeutic target in related diseases. 10.2147/IJGM.S456912
Overlapping Protein Accumulation Profiles of CADASIL and CAA: Is There a Common Mechanism Driving Cerebral Small-Vessel Disease? Young Kelly Z,Xu Gang,Keep Simon G,Borjigin Jimo,Wang Michael M The American journal of pathology Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and cerebral amyloid angiopathy (CAA) are two distinct vascular angiopathies that share several similarities in clinical presentation and vascular pathology. Given the clinical and pathologic overlap, the molecular overlap between CADASIL and CAA was explored. CADASIL and CAA protein profiles from recently published proteomics-based and immuno-based studies were compared to investigate the potential for shared disease mechanisms. A comparison of affected proteins in each disease highlighted 19 proteins that are regulated in both CADASIL and CAA. Functional analysis of the shared proteins predicts significant interaction between them and suggests that most enriched proteins play roles in extracellular matrix structure and remodeling. Proposed models to explain the observed enrichment of extracellular matrix proteins include both increased protein secretion and decreased protein turnover by sequestration of chaperones and proteases or formation of stable protein complexes. Single-cell RNA sequencing of vascular cells in mice suggested that the vast majority of the genes accounting for the overlapped proteins between CADASIL and CAA are expressed by fibroblasts. Thus, our current understanding of the molecular profiles of CADASIL and CAA appears to support potential for common mechanisms underlying the two disorders. 10.1016/j.ajpath.2020.11.015
Decreased water exchange rate across blood-brain barrier in hereditary cerebral small vessel disease. Brain : a journal of neurology Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and heterozygous HTRA1 mutation-related cerebral small vessel disease (CSVD) are the two types of dominant hereditary CSVD. Blood-brain barrier (BBB) failure has been hypothesized in the pathophysiology of CSVD. However, it is unclear whether there is BBB damage in the two types of hereditary CSVD, especially in heterozygous HTRA1 mutation-related CSVD. In this study, a case-control design was used with two disease groups including CADASIL (n = 24), heterozygous HTRA1 mutation-related CSVD (n = 9) and healthy controls (n = 24). All participants underwent clinical cognitive assessments and brain MRI. Diffusion-prepared pseudo-continuous arterial spin labelling was used to estimate the water exchange rate across the BBB (kw). Correlation and multiple linear regression analyses were used to examine the association between kw and disease burden and neuropsychological performance, respectively. Compared with the healthy controls, kw in the whole brain and multiple brain regions was decreased in both CADASIL and heterozygous HTRA1 mutation-related CSVD patients (Bonferroni-corrected P < 0.007). In the CADASIL group, decreased kw in the whole brain (β = -0.634, P = 0.001), normal-appearing white matter (β = -0.599, P = 0.002) and temporal lobe (β = -0.654, P = 0.001) was significantly associated with higher CSVD score after adjusting for age and sex. Reduced kw in the whole brain was significantly associated with poorer neuropsychological performance after adjusting for age, sex and education in both CADASIL and heterozygous HTRA1 mutation-related CSVD groups (β = 0.458, P = 0.001; β = 0.884, P = 0.008). This study showed that there was decreased water exchange rate across the BBB in both CADASIL and heterozygous HTRA1 mutation-related CSVD patients, suggesting a common pathophysiological mechanism underlying the two types of hereditary CSVD. These results highlight the potential use of kw for monitoring the course of CADASIL and heterozygous HTRA1 mutation-related CSVD, a possibility which should be tested in future research. 10.1093/brain/awac500