logo logo
Glucosamine-6-phosphate synthase--the multi-facets enzyme. Milewski Sławomir Biochimica et biophysica acta L-Glutamine: D-fructose-6-phosphate amidotransferase, known under trivial name of glucosamine-6-phosphate synthase, as the only member of the amidotransferase subfamily of enzymes, does not display any ammonia-dependent activity. This enzyme, catalysing the first committed step in a pathway leading to the eventual formation of uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc), is an important point of metabolic control in biosynthesis of amino sugar-containing macromolecules. The molecular mechanism of reaction catalysed by GlcN-6-P synthase is complex and involves both amino transfer and sugar isomerisation. Substantial alterations to the enzyme structure and properties have been detected in different neoplastic tissues. GlcN-6-P synthase is inflicted in phenomenon of hexosamine-induced insulin resistance in diabetes. Finally, this enzyme has been proposed as a promising target in antifungal chemotherapy. Most of these issues, especially their molecular aspects, have been extensively studied in recent years. This article provides a comprehensive overview of the present knowledge on this multi-facets enzyme. 10.1016/s0167-4838(02)00318-7
Materials-based strategies for multi-enzyme immobilization and co-localization: A review. Jia Feng,Narasimhan Balaji,Mallapragada Surya Biotechnology and bioengineering Immobilized enzymes as biocatalysts have great potential both scientifically and industrially because of their technological and economic importance. Their highly efficient catalytic mechanisms and reusability have made them excellent candidates for green and sustainable applications. Previous studies have primarily focused on single enzyme immobilization. However, there are many situations where a single enzyme cannot completely catalyze reactions and multiple enzymes working together in a cascade are needed. It is very challenging to efficiently drive the multi-step reaction toward the desired direction, which is especially true when reactive intermediates are present. Nature overcomes this limitation through the use of multi-enzyme complexes (MECs) to promote the overall catalytic efficiency, which has inspired researchers to synthesize artificial MECs to controllably enhance the production of the desired compounds in multi-step reaction cascades in vitro. The most common approaches to synthesize artificial MECs are to use genetic engineering techniques to create fusion proteins or to co-localize multiple enzymes on suitable carriers. This review focuses on the latter with a particular emphasis on materials-based approaches to enzyme co-localization, which builds on techniques developed for single enzyme immobilization. The attachment techniques used in single enzyme immobilization are also effective in multiple enzyme co-localization, which has a direct impact on the overall enzyme orientation and activity. For carrier-based strategies, the platforms developed for single enzyme immobilization are also appropriate for attaching and co-localizing multiple enzymes. However, the involvement of multiple components in co-localization brings many challenges. The properties of different enzymes makes co-localization complicated when selecting attachment techniques and platforms to preserve enzymatic activity, because the structure and function of each component enzyme needs to be taken into consideration to preserve the overall enzyme activity. In addition, the relative position of the multiple enzymes in a confined space plays a significant role in the interactions between different enzymes, which makes spatial control important for co-localization. This review focuses on the potential of materials-based approaches for multiple enzyme co-localization for the design of sustainable multi-enzyme biocatalysts. A critical analysis of the attachment techniques and carriers platforms that have been used in enzyme immobilization and multi-enzyme co-localization in vitro is provided. 10.1002/bit.25136
Strategies and perspectives of assembling multi-enzyme systems. Wang Shi-Zhen,Zhang Yong-Hui,Ren Hong,Wang Ya-Li,Jiang Wei,Fang Bai-Shan Critical reviews in biotechnology Multi-enzyme complexes have the potential to achieve high catalytic efficiency for sequence reactions due to their advantages in eliminating product inhibition, facilitating intermediate transfer and in situ regenerating cofactors. Constructing functional multi-enzyme systems to mimic natural multi-enzyme complexes is of great interest for multi-enzymatic biosynthesis and cell-free synthetic biotransformation, but with many challenges. Currently, various assembly strategies have been developed based on the interaction of biomacromolecules such as DNA, peptide and scaffolding protein. On the other hand, chemical-induced assembly is based on the affinity of enzymes with small molecules including inhibitors, cofactors and metal ions has the advantage of simplicity, site-to-site oriented structure control and economy. This review summarizes advances and progresses employing these strategies. Furthermore, challenges and perspectives in designing multi-enzyme systems are highlighted. 10.1080/07388551.2017.1303803
Bioinspired construction of multi-enzyme catalytic systems. Shi Jiafu,Wu Yizhou,Zhang Shaohua,Tian Yu,Yang Dong,Jiang Zhongyi Chemical Society reviews Enzyme catalysis, as a green, efficient process, displays exceptional functionality, adaptivity and sustainability. Multi-enzyme catalysis, which can accomplish the tandem synthesis of valuable materials/chemicals from renewable feedstocks, establishes a bridge between single-enzyme catalysis and whole-cell catalysis. Multi-enzyme catalysis occupies a unique and indispensable position in the realm of biological reactions for energy and environmental applications. Two complementary strategies, i.e., compartmentalization and substrate channeling, have been evolved by living organisms for implementing the complex in vivo multi-enzyme reactions (MERs), which have been applied to construct multi-enzyme catalytic systems (MECSs) with superior catalytic activity and stabilities in practical biocatalysis. This tutorial review aims to present the recent advances and future prospects in this burgeoning research area, stressing the features and applications of the two strategies for constructing MECSs and implementing in vitro MERs. The concluding remarks are presented with a perspective on the construction of MECSs through rational combination of compartmentalization and substrate channeling. 10.1039/c7cs00914c
Multi-enzyme Cascade Reactions in Metal-organic Frameworks. Liang Jieying,Liang Kang Chemical record (New York, N.Y.) Multi-enzyme cascade reactions are indispensable in biotechnology and many industrial (bio)chemical processes. However, most natural enzymes have poor stability and reusability, and tend to inactivate in toxic media or high temperature, which significantly limit their broader applications. Metal-organic frameworks (MOFs) are promising candidates for enzymes immobilization to produce nanocomposite structures that not only could shield the enzymes from harsh environments, but also facilitate selective diffusion of substrates and intermediates to the reactive site via their tailorable and ordered pore network. Multi-enzyme cascade reactions in MOFs have recently attracted considerable attention. This Personal Account discusses the different strategies for multi-enzyme-MOF interfaces and their cutting-edge applications from biosensing and catalytic nanomedicine to artificial/hybrid cells. At last, we provide a critical evaluation and future prospects to outline future research directions. 10.1002/tcr.202000067