The autism-associated gene chromodomain helicase DNA-binding protein 8 (CHD8) regulates noncoding RNAs and autism-related genes.
Wilkinson B,Grepo N,Thompson B L,Kim J,Wang K,Evgrafov O V,Lu W,Knowles J A,Campbell D B
Translational psychiatry
Chromodomain helicase DNA-binding protein 8 (CHD8) was identified as a leading autism spectrum disorder (ASD) candidate gene by whole-exome sequencing and subsequent targeted-sequencing studies. De novo loss-of-function mutations were identified in 12 individuals with ASD and zero controls, accounting for a highly significant association. Small interfering RNA-mediated knockdown of CHD8 in human neural progenitor cells followed by RNA sequencing revealed that CHD8 insufficiency results in altered expression of 1715 genes, including both protein-coding and noncoding RNAs. Among the 10 most changed transcripts, 4 (40%) were noncoding RNAs. The transcriptional changes among protein-coding genes involved a highly interconnected network of genes that are enriched in neuronal development and in previously identified ASD candidate genes. These results suggest that CHD8 insufficiency may be a central hub in neuronal development and ASD risk.
10.1038/tp.2015.62
Changes to gut amino acid transporters and microbiome associated with increased E/I ratio in Chd8 mouse model of ASD-like behavior.
Nature communications
Autism spectrum disorder (ASD), a group of neurodevelopmental disorders characterized by social communication deficits and stereotyped behaviors, may be associated with changes to the gut microbiota. However, how gut commensal bacteria modulate brain function in ASD remains unclear. Here, we used chromodomain helicase DNA-binding protein 8 (CHD8) haploinsufficient mice as a model of ASD to elucidate the pathways through which the host and gut microbiota interact with each other. We found that increased levels of amino acid transporters in the intestines of the mouse model of ASD contribute to the high level of serum glutamine and the increased excitation/inhibition (E/I) ratio in the brain. In addition, elevated α-defensin levels in the haploinsufficient mice resulted in dysregulation of the gut microbiota characterized by a reduced abundance of Bacteroides. Furthermore, supplementation with Bacteroides uniformis improved the ASD-like behaviors and restored the E/I ratio in the brain by decreasing intestinal amino acid transport and the serum glutamine levels. Our study demonstrates associations between changes in the gut microbiota and amino acid transporters, and ASD-like behavioral and electrophysiology phenotypes, in a mouse model.
10.1038/s41467-022-28746-2