logo logo
Cuproptosis, ferroptosis and PANoptosis in tumor immune microenvironment remodeling and immunotherapy: culprits or new hope. Molecular cancer Normal life requires cell division to produce new cells, but cell death is necessary to maintain balance. Dysregulation of cell death can lead to the survival and proliferation of abnormal cells, promoting tumor development. Unlike apoptosis, necrosis, and autophagy, the newly recognized forms of regulated cell death (RCD) cuproptosis, ferroptosis, and PANoptosis provide novel therapeutic strategies for tumor treatment. Increasing research indicates that the death of tumor and immune cells mediated by these newly discovered forms of cell death can regulate the tumor microenvironment (TME) and influence the effectiveness of tumor immunotherapy. This review primarily elucidates the molecular mechanisms of cuproptosis, ferroptosis, and PANoptosis and their complex effects on tumor cells and the TME. This review also summarizes the exploration of nanoparticle applications in tumor therapy based on in vivo and in vitro evidence derived from the induction or inhibition of these new RCD pathways. 10.1186/s12943-024-02130-8
Epigenetic regulation of diverse cell death modalities in cancer: a focus on pyroptosis, ferroptosis, cuproptosis, and disulfidptosis. Journal of hematology & oncology Tumor is a local tissue hyperplasia resulted from cancerous transformation of normal cells under the action of various physical, chemical and biological factors. The exploration of tumorigenesis mechanism is crucial for early prevention and treatment of tumors. Epigenetic modification is a common and important modification in cells, including DNA methylation, histone modification, non-coding RNA modification and m6A modification. The normal mode of cell death is programmed by cell death-related genes; however, recent researches have revealed some new modes of cell death, including pyroptosis, ferroptosis, cuproptosis and disulfidptosis. Epigenetic regulation of various cell deaths is mainly involved in the regulation of key cell death proteins and affects cell death by up-regulating or down-regulating the expression levels of key proteins. This study aims to investigate the mechanism of epigenetic modifications regulating pyroptosis, ferroptosis, cuproptosis and disulfidptosis of tumor cells, explore possible triggering factors in tumor development from a microscopic point of view, and provide potential targets for tumor therapy and new perspective for the development of antitumor drugs or combination therapies. 10.1186/s13045-024-01545-6
YTHDC1 as a tumor progression suppressor through modulating FSP1-dependent ferroptosis suppression in lung cancer. Cell death and differentiation Ferroptosis is a regulated cell death process initiated by iron-dependent phospholipid peroxidation and is mainly suppressed by GPX4-dependent and FSP1-dependent surveillance mechanisms. However, how the ferroptosis surveillance system is regulated during cancer development remains largely unknown. Here, we report that the YTHDC1-mediated mA epigenetic regulation of FSP1 alleviates the FSP1-dependent ferroptosis suppression that partially contributes to the tumor suppressive role of YTHDC1 in lung cancer progression. YTHDC1 knockdown promoted the lung tumor progression and upregulated FSP1 protein level that resulted in ferroptosis resistance of lung cancer cells. Silencing FSP1 abrogated YTHDC1 knockdown-induced proliferation increase and ferroptosis resistance. Mechanistically, YTHDC1 binding to the mA sites in the FSP1 3'-UTR recruited the alternative polyadenylation regulator CSTF3 to generate a less stable shorter 3'-UTR contained FSP1 mRNA, whereas YTHDC1 downregulation generated the longer 3'-UTR contained FSP1 mRNA that is stabilized by RNA binding protein HuR and thus led to the enhanced FSP1 protein level. Therefore, our findings identify YTHDC1 as a tumor progression suppressor in lung cancer and a ferroptosis regulator through modulating the FSP1 mRNA stability and thus suggest a ferroptosis-related therapeutic option for YTHDC1 lung cancer. 10.1038/s41418-023-01234-w
Lipid Quality Control and Ferroptosis: From Concept to Mechanism. Annual review of biochemistry Cellular quality control systems sense and mediate homeostatic responses to prevent the buildup of aberrant macromolecules, which arise from errors during biosynthesis, damage by environmental insults, or imbalances in enzymatic and metabolic activity. Lipids are structurally diverse macromolecules that have many important cellular functions, ranging from structural roles in membranes to functions as signaling and energy-storage molecules. As with other macromolecules, lipids can be damaged (e.g., oxidized), and cells require quality control systems to ensure that nonfunctional and potentially toxic lipids do not accumulate. Ferroptosis is a form of cell death that results from the failure of lipid quality control and the consequent accumulation of oxidatively damaged phospholipids. In this review, we describe a framework for lipid quality control, using ferroptosis as an illustrative example to highlight concepts related to lipid damage, membrane remodeling, and suppression or detoxification of lipid damage via preemptive and damage-repair lipid quality control pathways. 10.1146/annurev-biochem-052521-033527
Targeting ferroptosis by poly(acrylic) acid coated MnO nanoparticles alleviates acute liver injury. Nature communications Ferroptosis, a newly characterized form of regulated cell death, is induced by excessive accumulation of lipid peroxidation catalyzed by intracellular bioactive iron. Increasing evidence has suggested that ferroptosis is involved in the pathogenesis of several human diseases, including acute liver injury. Targeted inhibition of ferroptosis holds great promise for the clinical treatment of these diseases. Herein, we report a simple and one-pot synthesis of ultrasmall poly(acrylic) acid coated MnO nanoparticles (PAA@MnO-NPs, PMO), which perform multiple antioxidant enzyme-mimicking activities and can scavenge broad-spectrum reactive oxygen species. PMO could potently suppress ferroptosis. Mechanistically, after being absorbed mainly through macropinocytosis, PMO are largely enriched in lysosomes, where PMO detoxify ROS, inhibit ferritinophagy-mediated iron mobilization and preserve mTOR activation, which collectively confer the prominent inhibition of ferroptosis. Additionally, PMO injection potently counteracts lipid peroxidation and alleviates acetaminophen- and ischaemia/reperfusion-induced acute liver injury in mice. Collectively, our results reveal that biocompatible PMO act as potent ferroptosis inhibitors through multifaceted mechanisms, which ensures that PMO have great translational potential for the clinical treatment of ferroptosis-related acute liver injury. 10.1038/s41467-023-43308-w
Immunogenicity of ferroptosis in cancer: a matter of context? Trends in cancer Ferroptosis is a variant of regulated cell death (RCD) elicited by an imbalance of cellular redox homeostasis that culminates with extensive lipid peroxidation and rapid plasma membrane breakdown. Since other necrotic forms of RCD, such as necroptosis, are highly immunogenic, ferroptosis inducers have attracted considerable attention as potential tools to selectively kill malignant cells while eliciting therapeutically relevant tumor-targeting immune responses. However, rather than being consistently immunogenic, ferroptosis mediates context-dependent effects on anticancer immunity. The inability of ferroptotic cancer cells to elicit adaptive immune responses may arise from contextual deficiencies in intrinsic aspects of the process, such as adjuvanticity and antigenicity, or from microenvironmental defects imposed by ferroptotic cancer cells themselves or elicited by the induction of ferroptosis in immune cells. 10.1016/j.trecan.2024.01.013
Ferroptosis-based advanced therapies as treatment approaches for metabolic and cardiovascular diseases. Cell death and differentiation Ferroptosis has attracted attention throughout the last decade because of its tremendous clinical importance. Here, we review the rapidly growing body of literature on how inhibition of ferroptosis may be harnessed for the treatment of common diseases, and we focus on metabolic and cardiovascular unmet medical needs. We introduce four classes of preclinically established ferroptosis inhibitors (ferrostatins) such as iron chelators, radical trapping agents that function in the cytoplasmic compartment, lipophilic radical trapping antioxidants and ninjurin-1 (NINJ1) specific monoclonal antibodies. In contrast to ferroptosis inducers that cause serious untoward effects such as acute kidney tubular necrosis, the side effect profile of ferrostatins appears to be limited. We also consider ferroptosis as a potential side effect itself when several advanced therapies harnessing small-interfering RNA (siRNA)-based treatment approaches are tested. Importantly, clinical trial design is impeded by the lack of an appropriate biomarker for ferroptosis detection in serum samples or tissue biopsies. However, we discuss favorable clinical scenarios suited for the design of anti-ferroptosis clinical trials to test such first-in-class compounds. We conclude that targeting ferroptosis exhibits outstanding treatment options for metabolic and cardiovascular diseases, but we have only begun to translate this knowledge into clinically relevant applications. 10.1038/s41418-024-01350-1
Ferroptosis at the nexus of metabolism and metabolic diseases. Theranostics Ferroptosis, an iron-dependent form of regulated cell death, is emerging as a crucial regulator of human physiology and pathology. Increasing evidence showcases a reciprocal relationship between ferroptosis and dysregulated metabolism, propagating a pathogenic vicious cycle that exacerbates pathology and human diseases, particularly metabolic disorders. Consequently, there is a rapidly growing interest in developing ferroptosis-based therapeutics. Therefore, a comprehensive understanding of the intricate interplay between ferroptosis and metabolism could provide an invaluable resource for mechanistic insight and therapeutic development. In this review, we summarize the important metabolic substances and associated pathways in ferroptosis initiation and progression, outline the cascade responses of ferroptosis in disease development, overview the roles and mechanisms of ferroptosis in metabolic diseases, introduce the methods for ferroptosis detection, and discuss the therapeutic perspectives of ferroptosis, which collectively aim to illustrate a comprehensive view of ferroptosis in basic, translational, and clinical science. 10.7150/thno.100080
Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal transduction and targeted therapy Ferroptosis is a non-apoptotic form of regulated cell death characterized by the lethal accumulation of iron-dependent membrane-localized lipid peroxides. It acts as an innate tumor suppressor mechanism and participates in the biological processes of tumors. Intriguingly, mesenchymal and dedifferentiated cancer cells, which are usually resistant to apoptosis and traditional therapies, are exquisitely vulnerable to ferroptosis, further underscoring its potential as a treatment approach for cancers, especially for refractory cancers. However, the impact of ferroptosis on cancer extends beyond its direct cytotoxic effect on tumor cells. Ferroptosis induction not only inhibits cancer but also promotes cancer development due to its potential negative impact on anticancer immunity. Thus, a comprehensive understanding of the role of ferroptosis in cancer is crucial for the successful translation of ferroptosis therapy from the laboratory to clinical applications. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms, biological functions, regulatory pathways, and interactions with the tumor microenvironment. We also summarize the potential applications of ferroptosis induction in immunotherapy, radiotherapy, and systemic therapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis markers, the current challenges and future directions of ferroptosis in the treatment of cancer. 10.1038/s41392-024-01769-5
Ferroptosis in infection, inflammation, and immunity. Chen Xin,Kang Rui,Kroemer Guido,Tang Daolin The Journal of experimental medicine Ferroptosis is a type of regulated necrosis that is triggered by a combination of iron toxicity, lipid peroxidation, and plasma membrane damage. The upstream inducers of ferroptosis can be divided into two categories (biological versus chemical) and activate two major pathways (the extrinsic/transporter versus the intrinsic/enzymatic pathways). Excessive or deficient ferroptotic cell death is implicated in a growing list of physiological and pathophysiological processes, coupled to a dysregulated immune response. This review focuses on new discoveries related to how ferroptotic cells and their spilled contents shape innate and adaptive immunity in health and disease. Understanding the immunological characteristics and activity of ferroptotic death not only illuminates an intersection between cell death and immunity but may also lead to the development of novel treatment approaches for immunopathological diseases. 10.1084/jem.20210518
Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal transduction and targeted therapy Ferroptosis is an iron-dependent form of regulated cell death with distinct characteristics, including altered iron homeostasis, reduced defense against oxidative stress, and abnormal lipid peroxidation. Recent studies have provided compelling evidence supporting the notion that ferroptosis plays a key pathogenic role in many diseases such as various cancer types, neurodegenerative disease, diseases involving tissue and/or organ injury, and inflammatory and infectious diseases. Although the precise regulatory networks that underlie ferroptosis are largely unknown, particularly with respect to the initiation and progression of various diseases, ferroptosis is recognized as a bona fide target for the further development of treatment and prevention strategies. Over the past decade, considerable progress has been made in developing pharmacological agonists and antagonists for the treatment of these ferroptosis-related conditions. Here, we provide a detailed overview of our current knowledge regarding ferroptosis, its pathological roles, and its regulation during disease progression. Focusing on the use of chemical tools that target ferroptosis in preclinical studies, we also summarize recent advances in targeting ferroptosis across the growing spectrum of ferroptosis-associated pathogenic conditions. Finally, we discuss new challenges and opportunities for targeting ferroptosis as a potential strategy for treating ferroptosis-related diseases. 10.1038/s41392-023-01606-1
When ferroptosis meets pathogenic infections. Trends in microbiology Apoptosis, necrosis, or autophagy are diverse types of regulated cell death (RCD), recognized as the strategies that host cells use to defend against pathogens such as viruses, bacteria, or fungi. Pathogens can induce or block different types of host cell RCD, promoting propagation or evading host immune surveillance. Ferroptosis is a newly identified RCD. Evidence has demonstrated how pathogens regulate ferroptosis to promote their replication, dissemination, and pathogenesis. However, the interaction between ferroptosis and pathogenic infections still needs to be completely elucidated. This review summarizes the advances in the interaction between pathogenic infections and host ferroptotic processes, focusing on the underlying mechanisms of how pathogens exploit ferroptosis, and discussing possible therapeutic measures against pathogen-associated diseases in a ferroptosis-dependent manner. 10.1016/j.tim.2022.11.006
Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal transduction and targeted therapy In recent years, immunotherapy represented by immune checkpoint inhibitors (ICIs) has led to unprecedented breakthroughs in cancer treatment. However, the fact that many tumors respond poorly or even not to ICIs, partly caused by the absence of tumor-infiltrating lymphocytes (TILs), significantly limits the application of ICIs. Converting these immune "cold" tumors into "hot" tumors that may respond to ICIs is an unsolved question in cancer immunotherapy. Since it is a general characteristic of cancers to resist apoptosis, induction of non-apoptotic regulated cell death (RCD) is emerging as a new cancer treatment strategy. Recently, several studies have revealed the interaction between non-apoptotic RCD and antitumor immunity. Specifically, autophagy, ferroptosis, pyroptosis, and necroptosis exhibit synergistic antitumor immune responses while possibly exerting inhibitory effects on antitumor immune responses. Thus, targeted therapies (inducers or inhibitors) against autophagy, ferroptosis, pyroptosis, and necroptosis in combination with immunotherapy may exert potent antitumor activity, even in tumors resistant to ICIs. This review summarizes the multilevel relationship between antitumor immunity and non-apoptotic RCD, including autophagy, ferroptosis, pyroptosis, and necroptosis, and the potential targeting application of non-apoptotic RCD to improve the efficacy of immunotherapy in malignancy. 10.1038/s41392-022-01046-3
The cell biology of ferroptosis. Nature reviews. Molecular cell biology Ferroptosis is a non-apoptotic cell death mechanism characterized by iron-dependent membrane lipid peroxidation. Here, we review what is known about the cellular mechanisms mediating the execution and regulation of ferroptosis. We first consider how the accumulation of membrane lipid peroxides leads to the execution of ferroptosis by altering ion transport across the plasma membrane. We then discuss how metabolites and enzymes that are distributed in different compartments and organelles throughout the cell can regulate sensitivity to ferroptosis by impinging upon iron, lipid and redox metabolism. Indeed, metabolic pathways that reside in the mitochondria, endoplasmic reticulum, lipid droplets, peroxisomes and other organelles all contribute to the regulation of ferroptosis sensitivity. We note how the regulation of ferroptosis sensitivity by these different organelles and pathways seems to vary between different cells and death-inducing conditions. We also highlight transcriptional master regulators that integrate the functions of different pathways and organelles to modulate ferroptosis sensitivity globally. Throughout this Review, we highlight open questions and areas in which progress is needed to better understand the cell biology of ferroptosis. 10.1038/s41580-024-00703-5
Ferroptosis: molecular mechanisms and health implications. Cell research Cell death can be executed through different subroutines. Since the description of ferroptosis as an iron-dependent form of non-apoptotic cell death in 2012, there has been mounting interest in the process and function of ferroptosis. Ferroptosis can occur through two major pathways, the extrinsic or transporter-dependent pathway and the intrinsic or enzyme-regulated pathway. Ferroptosis is caused by a redox imbalance between the production of oxidants and antioxidants, which is driven by the abnormal expression and activity of multiple redox-active enzymes that produce or detoxify free radicals and lipid oxidation products. Accordingly, ferroptosis is precisely regulated at multiple levels, including epigenetic, transcriptional, posttranscriptional and posttranslational layers. The transcription factor NFE2L2 plays a central role in upregulating anti-ferroptotic defense, whereas selective autophagy may promote ferroptotic death. Here, we review current knowledge on the integrated molecular machinery of ferroptosis and describe how dysregulated ferroptosis is involved in cancer, neurodegeneration, tissue injury, inflammation, and infection. 10.1038/s41422-020-00441-1
Ferroptosis, a new form of cell death: opportunities and challenges in cancer. Mou Yanhua,Wang Jun,Wu Jinchun,He Dan,Zhang Chunfang,Duan Chaojun,Li Bin Journal of hematology & oncology Ferroptosis is a novel type of cell death with distinct properties and recognizing functions involved in physical conditions or various diseases including cancers. The fast-growing studies of ferroptosis in cancer have boosted a perspective for its usage in cancer therapeutics. Here, we review the current findings of ferroptosis regulation and especially focus on the function of ncRNAs in mediating the process of cell ferroptotic death and on how ferroptosis was in relation to other regulated cell deaths. Aberrant ferroptosis in diverse cancer types and tissues were summarized, and we elaborated recent data about the novel actors of some "conventional" drugs or natural compounds as ferroptosis inducers in cancer. Finally, we deliberate future orientation for ferroptosis in cancer cells and current unsettled issues, which may forward the speed of clinical use of ferroptosis induction in cancer treatment. 10.1186/s13045-019-0720-y
Ferroptosis: past, present and future. Li Jie,Cao Feng,Yin He-Liang,Huang Zi-Jian,Lin Zhi-Tao,Mao Ning,Sun Bei,Wang Gang Cell death & disease Ferroptosis is a new type of cell death that was discovered in recent years and is usually accompanied by a large amount of iron accumulation and lipid peroxidation during the cell death process; the occurrence of ferroptosis is iron-dependent. Ferroptosis-inducing factors can directly or indirectly affect glutathione peroxidase through different pathways, resulting in a decrease in antioxidant capacity and accumulation of lipid reactive oxygen species (ROS) in cells, ultimately leading to oxidative cell death. Recent studies have shown that ferroptosis is closely related to the pathophysiological processes of many diseases, such as tumors, nervous system diseases, ischemia-reperfusion injury, kidney injury, and blood diseases. How to intervene in the occurrence and development of related diseases by regulating cell ferroptosis has become a hotspot and focus of etiological research and treatment, but the functional changes and specific molecular mechanisms of ferroptosis still need to be further explored. This paper systematically summarizes the latest progress in ferroptosis research, with a focus on providing references for further understanding of its pathogenesis and for proposing new targets for the treatment of related diseases. 10.1038/s41419-020-2298-2
Broadening horizons: the role of ferroptosis in cancer. Chen Xin,Kang Rui,Kroemer Guido,Tang Daolin Nature reviews. Clinical oncology The discovery of regulated cell death processes has enabled advances in cancer treatment. In the past decade, ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, has been implicated in the development and therapeutic responses of various types of tumours. Experimental reagents (such as erastin and RSL3), approved drugs (for example, sorafenib, sulfasalazine, statins and artemisinin), ionizing radiation and cytokines (such as IFNγ and TGFβ1) can induce ferroptosis and suppress tumour growth. However, ferroptotic damage can trigger inflammation-associated immunosuppression in the tumour microenvironment, thus favouring tumour growth. The extent to which ferroptosis affects tumour biology is unclear, although several studies have found important correlations between mutations in cancer-relevant genes (for example, RAS and TP53), in genes encoding proteins involved in stress response pathways (such as NFE2L2 signalling, autophagy and hypoxia) and the epithelial-to-mesenchymal transition, and responses to treatments that activate ferroptosis. Herein, we present the key molecular mechanisms of ferroptosis, describe the crosstalk between ferroptosis and tumour-associated signalling pathways, and discuss the potential applications of ferroptosis in the context of systemic therapy, radiotherapy and immunotherapy. 10.1038/s41571-020-00462-0
Ferroptosis at the intersection of lipid metabolism and cellular signaling. Molecular cell Ferroptosis, a newly emerged form of regulated necrotic cell death, has been demonstrated to play an important role in multiple diseases including cancer, neurodegeneration, and ischemic organ injury. Mounting evidence also suggests its potential physiological function in tumor suppression and immunity. The execution of ferroptosis is driven by iron-dependent phospholipid peroxidation. As such, the metabolism of biological lipids regulates ferroptosis via controlling phospholipid peroxidation, as well as various other cellular processes relevant to phospholipid peroxidation. In this review, we provide a comprehensive analysis by focusing on how lipid metabolism impacts the initiation, propagation, and termination of phospholipid peroxidation; how multiple signal transduction pathways communicate with ferroptosis via modulating lipid metabolism; and how such intimate cross talk of ferroptosis with lipid metabolism and related signaling pathways can be exploited for the development of rational therapeutic strategies. 10.1016/j.molcel.2022.03.022
Ferroptosis: mechanisms, biology and role in disease. Nature reviews. Molecular cell biology The research field of ferroptosis has seen exponential growth over the past few years, since the term was coined in 2012. This unique modality of cell death, driven by iron-dependent phospholipid peroxidation, is regulated by multiple cellular metabolic pathways, including redox homeostasis, iron handling, mitochondrial activity and metabolism of amino acids, lipids and sugars, in addition to various signalling pathways relevant to disease. Numerous organ injuries and degenerative pathologies are driven by ferroptosis. Intriguingly, therapy-resistant cancer cells, particularly those in the mesenchymal state and prone to metastasis, are exquisitely vulnerable to ferroptosis. As such, pharmacological modulation of ferroptosis, via both its induction and its inhibition, holds great potential for the treatment of drug-resistant cancers, ischaemic organ injuries and other degenerative diseases linked to extensive lipid peroxidation. In this Review, we provide a critical analysis of the current molecular mechanisms and regulatory networks of ferroptosis, the potential physiological functions of ferroptosis in tumour suppression and immune surveillance, and its pathological roles, together with a potential for therapeutic targeting. Importantly, as in all rapidly evolving research areas, challenges exist due to misconceptions and inappropriate experimental methods. This Review also aims to address these issues and to provide practical guidelines for enhancing reproducibility and reliability in studies of ferroptosis. Finally, we discuss important concepts and pressing questions that should be the focus of future ferroptosis research. 10.1038/s41580-020-00324-8