Linking alterations in estrogen receptor expression to memory deficits and depressive behavior in an ovariectomy mouse model.
Scientific reports
The high risk of neurological disorders in postmenopausal women is an emerging medical issue. Based on the hypothesis of altered estrogen receptors (ERα and β) after the decline of estrogen production, we investigated the changes in ERs expressions across brain regions and depressive/amnesic behaviors. C57BL/6J female mice were ovariectomized (OVX) to establish a menopausal condition. Along with behavior tests (anxiety, depression, and memory), the expression of ERs, microglial activity, and neuronal activity was measured in six brain regions (hippocampus, prefrontal cortex, striatum, raphe nucleus, amygdala, and hypothalamus) from 4 to 12 weeks after OVX. Mice exhibited anxiety- and depressive-like behaviors, as well as memory impairment. These behavioral alterations have been linked to a suppression in the expression of ERβ. The decreased ERβ expression coincided with microglial-derived neuroinflammation, as indicated by notable activations of Ionized calcium-binding adapter molecule 1 and Interleukin-1beta. Additionally, the activity of brain-derived neurotrophic factor (BDNF), particularly in the hippocampus, decreased in a time-dependent manner from 4 to 12 weeks post-OVX. Our study provides evidence shedding light on the susceptibility to memory impairment and depression in women after menopause. This susceptibility is associated with the suppression of ERβ and alteration of ERα in six brain regions.
10.1038/s41598-024-57611-z
Female mice lacking membrane estrogen receptor alpha display impairments in spatial memory.
Hormones and behavior
Estrogens exert effects on cognition by acting on estrogen receptors (ER) including ERα. Activation of nuclear ERα results in classical genomic signaling leading to transcriptional changes that occur over hours to days. In contrast, activation of ERα localized to the membrane results in rapid signaling with effects occurring in seconds to minutes. The goal of the current study was to determine the role of membrane ERα in spatial memory. Female wildtype (WT) and transgenic mice that lack membrane ERα and express nuclear only ERα (NOER) were trained on an eight-arm radial-maze task. Following training, mice were tested on delay trials, in which delays ranging from 30 min to 5 h were inserted between the 4th and 5th arm choices. Performance was measured by number of proactive and retroactive errors. Proactive errors are short-term working memory errors defined by reentries into arms previously visited during the post-delay period or errors made during the pre-delay period. Retroactive errors are delay-dependent memory errors, defined as reentries into arms during the post-delay that were previously visited during the pre-delay. Consistent with a role for membrane ERα in rapid signaling, NOER mice made more proactive errors than WTs across all delays. NOER mice made more retroactive errors than WTs only after the 5-h delay. WT and NOER mice performed similarly on elevated plus maze and open field tests indicating no effects of membrane ERα on anxiety-related behavior or locomotor activity. Results reveal that membrane ERα plays important roles in both short-term and longer-term delay-dependent memory either directly or potentially indirectly through a role in the regulation of estradiol levels via the hypothalamic-pituitary-gonadal axis.
10.1016/j.yhbeh.2024.105597
Estrogen Receptor Genes, Cognitive Decline, and Alzheimer Disease.
Neurology
BACKGROUND AND OBJECTIVES:Lifetime risk of Alzheimer disease (AD) dementia is twofold higher in women compared with men, and low estrogen levels in postmenopause have been suggested as a possible contributor. We examined 3 (, , and ) variants in association with AD traits as an indirect method to test the association between estrogen and AD in women. Although the study focus was on women, in a comparison, we separately examined molecular variants in men. METHODS:Participants were followed for an average of 10 years in one of the 2 longitudinal clinical pathologic studies of aging. Global cognition was assessed using a composite score derived from 19 neuropsychological tests' scores. Postmortem pathologic assessment included examination of 3 AD (amyloid-β and tau tangles determined by immunohistochemistry, and a global AD pathology score derived from diffuse and neurotic plaques and neurofibrillary tangle count) and 8 non-AD pathology indices. molecular genomic variants included genotyping and examining DNA methylation and RNA expression in brain regions including the dorsolateral prefrontal cortex (DLPFC) that are major players in cognition and often have AD pathology. RESULTS:The mean age of women (N = 1711) at baseline was 78.0 (SD = 7.7) years. In women, molecular variants had the most consistent associations with AD traits. DNA methylation was associated with cognitive decline, tau tangle density, and global AD pathology score. RNA expression in DLPFC was related to cognitive decline and tau tangle density. Other associations included associations of and sequence variants and DNA methylation with cognition. RNA expressions in DLPFC of genes involved in signaling mechanisms of activated ERs were also associated with cognitive decline and tau tangle density in women. In men (N = 651, average age at baseline: 77.4 [SD = 7.3]), there were less robust associations between molecular genomic variants and AD cognitive and pathologic traits. No consistent association was seen between molecular genomic variations and non-AD pathologies in either of the sexes. DISCUSSION: DNA methylation and RNA expression, and to some extent polymorphisms, were associated with AD cognitive and pathologic traits in women, and to a lesser extent in men.
10.1212/WNL.0000000000206833
Transcriptomic Profile Identifies Hippocampal Sgk1 as the Key Mediator of Ovarian Estrogenic Regulation on Spatial Learning and Memory and Aβ Accumulation.
Neurochemical research
Previous studies have shown that ovarian estrogens are involved in the occurrence and pathology of Alzheimer's disease (AD) through regulation on hippocampal synaptic plasticity and spatial memory; however, the underlying mechanisms have not yet been elucidated at the genomic scale. In this study, we established the postmenopausal estrogen-deficient model by ovariectomy (OVX). Then, we used high-throughput Affymetrix Clariom transcriptomics and found 143 differentially expressed genes in the hippocampus of OVX mice with the absolute fold change ≥ 1.5 and P < 0.05. GO analysis showed that the highest enrichment was seen in long-term memory. Combined with the response to steroid hormone enrichment and GeneMANIA network prediction, the serum and glucocorticoid-regulated kinase 1 gene (Sgk1) was found to be the most potent candidate for ovarian estrogenic regulation. Sgk1 overexpression viral vectors (oSgk1) were then constructed and injected into the hippocampus of OVX mice. Morris water maze test revealed that the impaired spatial learning and memory induced by OVX was rescued by Sgk1 overexpression. Additionally, the altered expression of synaptic proteins and actin remodeling proteins and changes in CA1 spine density and synapse density induced by OVX were also significantly reversed by oSgk1. Moreover, the OVX-induced increase in Aβ-producing BACE1 and Aβ and the decrease in insulin degrading enzyme were significantly reversed by oSgk1. The above results show that multiple pathways and genes are involved in ovarian estrogenic regulation of the function of the hippocampus, among which Sgk1 may be a novel potent target against estrogen-sensitive hippocampal dysfunctions, such as Aβ-initiated AD.
10.1007/s11064-022-03690-1
Hippocampal Aromatase Knockdown Aggravates Ovariectomy-Induced Spatial Memory Impairment, Aβ Accumulation and Neural Plasticity Deficiency in Adult Female Mice.
Neurochemical research
Ovarian estrogens (mainly 17β estradiol, E2) have been involved in the regulation of the structure of hippocampus, the center of spatial memory. In recent years, high levels of aromatase (AROM), the estrogen synthase, has been localized in hippocampus; and this hippocampus-derived E2 seems to be functional in synaptic plasticity and spatial memory as ovarian E2 does. However, the contribution of ovarian E2 and hippocampal E2 to spatial memory and neural plasticity remains unclear. In this study, AROM-specific RNA interference AAVs (shAROM) were constructed and injected into the hippocampus of control or ovariectomized (OVX) mice. Four weeks later the spatial learning and memory behavior was examined with Morris water maze, the expression of hippocampal Aβ related proteins, selected synaptic proteins and CA1 synapse density, actin polymerization related proteins and CA1 spine density were also examined. The results showed that while OVX and hippocampal shAROM contributed similarly to most of the parameters examined, shAROM induced more increase in BACE1 (amyloidogenic β-secretase), more decrease in neprilysin (Aβ remover) and Profilin-1 (actin polymerization inducer). More importantly, combined OVX and shAROM treatment displayed most significant impairment of spatial learning and memory as well as decrease in synaptic plasticity compared to OVX or shAROM alone. In conclusion, the above results clearly demonstrated the crucial role of hippocampal E2 in the regulation of the structure and function of hippocampus besides ovarian E2, indicating that hippocampal E2 content should also be taken into consideration during estrogenic replacement.
10.1007/s11064-021-03258-5
Long-term ovarian hormone deprivation alters functional connectivity, brain neurochemical profile and white matter integrity in the Tg2576 amyloid mouse model of Alzheimer's disease.
Neurobiology of aging
Premenopausal bilateral ovariectomy is considered to be one of the risk factors of Alzheimer's disease (AD). However, the underlying mechanisms remain unclear. Here, we aimed to investigate long-term neurological consequences of ovariectomy in a rodent AD model, TG2576 (TG), and wild-type mice (WT) that underwent an ovariectomy or sham-operation, using in vivo MRI biomarkers. An increase in osmoregulation and energy metabolism biomarkers in the hypothalamus, a decrease in white matter integrity, and a decrease in the resting-state functional connectivity was observed in ovariectomized TG mice compared to sham-operated TG mice. In addition, we observed an increase in functional connectivity in ovariectomized WT mice compared to sham-operated WT mice. Furthermore, genotype (TG vs. WT) effects on imaging markers and GFAP immunoreactivity levels were observed, but there was no effect of interaction (Genotype × Surgery) on amyloid-beta-and GFAP immunoreactivity levels. Taken together, our results indicated that both genotype and ovariectomy alters imaging biomarkers associated with AD.
10.1016/j.neurobiolaging.2021.02.011
Estrogen deficiency exacerbates learning and memory deficits associated with glucose metabolism disorder in APP/PS1 double transgenic female mice.
Genes & diseases
Alterations in glucose metabolism occur in the brain in the early stage of Alzheimer's disease (AD), and menopausal women have more severe metabolic dysfunction and are more prone to dementia than men. Although estrogen deficiency-induced changes in glucose metabolism have been previously studied in animal models, their molecular mechanisms in AD remain elusive. To investigate this issue, double transgenic (APP/PS1) female mice were subjected to bilateral ovariectomy at 3 months of age and were sacrificed 1 week, 1 month and 3 months after surgery to simulate early, middle and late postmenopause, respectively. Our analysis demonstrated that estrogen deficiency exacerbates learning and memory deficits in this mouse model of postmenopause. Estrogen deficiency impairs the function of mitochondria in glucose metabolism. It is possible that the occurrence of AD is associated with the aberrant mitochondrial ERβ-mediated IGF-1/IGF-1R/GSK-3β signaling pathway. In this study, we established a potential mechanism for the increased risk of AD in postmenopausal women and proposed a therapeutic target for AD due to postmenopause.
10.1016/j.gendis.2021.01.007
Expression and function of estrogen receptors and estrogen-related receptors in the brain and their association with Alzheimer's disease.
Frontiers in endocrinology
While estrogens are well known for their pivotal role in the female reproductive system, they also play a crucial function in regulating physiological processes associated with learning and memory in the brain. Moreover, they have neuroprotective effects in the pathogenesis of Alzheimer's disease (AD). Importantly, AD has a higher incidence in older and postmenopausal women than in men, and estrogen treatment might reduce the risk of AD in these women. In general, estrogens bind to and activate estrogen receptors (ERs)-mediated transcriptional machineries, and also stimulate signal transduction through membrane ERs (mERs). Estrogen-related receptors (ERRs), which share homologous sequences with ERs but lack estrogen-binding capabilities, are widely and highly expressed in the human brain and have also been implicated in AD pathogenesis. In this review, we primarily provide a summary of ER and ERR expression patterns in the human brain. In addition, we summarize recent studies on their role in learning and memory. We then review and discuss research that has elucidated the functions and importance of ERs and ERRs in AD pathogenesis, including their role in Aβ clearance and the reduction of phosphorylated tau levels. Elucidation of the mechanisms underlying ER- and ERR-mediated transcriptional machineries and their functions in healthy and diseased brains would provide new perspectives for the diagnosis and treatment of AD. Furthermore, exploring the potential role of estrogens and their receptors, ERs, in AD will facilitate a better understanding of the sex differences observed in AD, and lead to novel sex-specific therapeutic approaches.
10.3389/fendo.2023.1220150
Reproductive function and behaviors: an update on the role of neural estrogen receptors alpha and beta.
Frontiers in endocrinology
Infertility is becoming a major public health problem, with increasing frequency due to medical, environmental and societal causes. The increasingly late age of childbearing, growing exposure to endocrine disruptors and other reprotoxic products, and increasing number of medical reproductive dysfunctions (endometriosis, polycystic ovary syndrome, etc.) are among the most common causes. Fertility relies on fine-tuned control of both neuroendocrine function and reproductive behaviors, those are critically regulated by sex steroid hormones. Testosterone and estradiol exert organizational and activational effects throughout life to establish and activate the neural circuits underlying reproductive function. This regulation is mediated through estrogen receptors (ERs) and androgen receptor (AR). Estradiol acts mainly via nuclear estrogen receptors ERα and ERβ. The aim of this review is to summarize the genetic studies that have been undertaken to comprehend the specific contribution of ERα and ERβ in the neural circuits underlying the regulation of the hypothalamic-pituitary-gonadal axis and the expression of reproductive behaviors, including sexual and parental behavior. Particular emphasis will be placed on the neural role of these receptors and the underlying sex differences.
10.3389/fendo.2024.1408677
Estrogen Receptors-Mediated Apoptosis in Hormone-Dependent Cancers.
International journal of molecular sciences
It is known that estrogen stimulates growth and inhibits apoptosis through estrogen receptor(ER)-mediated mechanisms in many cancer cell types. Interestingly, there is strong evidence that estrogens can also induce apoptosis, activating different ER isoforms in cancer cells. It has been observed that E2/ERα complex activates multiple pathways involved in both cell cycle progression and apoptotic cascade prevention, while E2/ERβ complex in many cases directs the cells to apoptosis. However, the exact mechanism of estrogen-induced tumor regression is not completely known. Nevertheless, ERs expression levels of specific splice variants and their cellular localization differentially affect outcome of estrogen-dependent tumors. The goal of this review is to provide a general overview of current knowledge on ERs-mediated apoptosis that occurs in main hormone dependent-cancers. Understanding the molecular mechanisms underlying the induction of ER-mediated cell death will be useful for the development of specific ligands capable of triggering apoptosis to counteract estrogen-dependent tumor growth.
10.3390/ijms23031242