logo logo
Integrated analysis of histone lysine lactylation (Kla)-specific genes suggests that NR6A1, OSBP2 and UNC119B are novel therapeutic targets for hepatocellular carcinoma. Scientific reports Histone lysine lactylation (Kla) plays a vital role in the tumorigenesis of hepatocellular carcinoma (HCC). Hence, we focused on Kla-specific genes to select novel therapeutic targets. Differentially expressed Kla-specific genes (DEKlaGs) were identified from TCGA with the cut-off criteria |log(FlodChange (FC))| > 2, p-value < 0.05, following investigating the prognostic value. The correlation between lactate accumulation and prognostic DEKlaGs expression was further investigated. On the other hand, we explored the roles of Kla activation in the immune microenvironment, immunotherapy, and drug resistance. We conducted gene set enrichment analysis (GSEA) to predict the pathways influenced by Kla. The predictive power of Cox model was further identified in ICGC and GEO databases. A total of 129 DEKlaGs were identified, and 32 molecules might be potential prognostic biomarkers. A Cox model including ARHGEF37, MTFR2, NR6A1, NT5DC2, OSBP2, RNASEH2A, SFN, and UNC119B was constructed, which suggested unfavorable overall survival in high-risk score group, and risk score could serve as an indicator for large tumor size, poor pathological grade and advanced stage. NR6A1, OSBP2 and UNC119B could inhibit NK cell as well as TIL cell infiltration, and impair Type-I and II IFN responses in HCC, thereby contributing to unsatisfactory prognosis and immunotherapy resistance. OSBP2 and UNC119B were identified to be related to chemotherapy resistance. GSEA showed that WNT, MTOR, MAPK and NOTCH signaling pathways were activated, indicating that these pathways might play a crucial role during the Kla process. On the other hand, we showed that NR6A1 and OSBP2 were overexpressed in GEO. OSBP2 and UNC119B contributed to poor survival and advanced stage in ICGC. In summary, histone Kla was related to HCC prognosis and might serve as an independent biomarker. NR6A1, OSBP2 and UNC119B were associated with the prognosis, immunotherapy, and chemotherapy resistance, suggesting that NR6A1, OSBP2 and UNC119B might be novel candidate therapeutic targets for HCC. 10.1038/s41598-023-46057-4
Lactate and lactylation in gastrointestinal cancer: Current progress and perspectives (Review). Oncology reports Gastrointestinal (GI) cancers, which have notable incidence and mortality, are impacted by metabolic reprogramming, especially the increased production and accumulation of lactate. Lactylation, a post‑translational modification driven by lactate, is a crucial regulator of gene expression and cellular function in GI cancer. The present review aimed to examine advancements in understanding lactate and lactylation in GI cancer. The mechanisms of lactate production, its influence on the tumor microenvironment and the clinical implications of lactate levels as potential biomarkers were explored. Furthermore, lactylation was investigated, including its biochemical foundation, primary targets and functional outcomes. The present review underscored potential therapeutic strategies targeting lactate metabolism and lactylation. Challenges and future directions emphasize the potential of lactate and lactylation as innovative therapeutic targets in GI cancer to improve clinical outcomes. 10.3892/or.2024.8839
Tumor lactic acid: a potential target for cancer therapy. Archives of pharmacal research Tumor development is influenced by circulating metabolites and most tumors are exposed to substantially elevated levels of lactic acid and low levels of nutrients, such as glucose and glutamine. Tumor-derived lactic acid, the major circulating carbon metabolite, regulates energy metabolism and cancer cell signaling pathways, while also acting as an energy source and signaling molecule. Recent studies have yielded new insights into the pro-tumorigenic action of lactic acid and its metabolism. These insights suggest an anti-tumor therapeutic strategy targeting the oncometabolite lactic acid, with the aim of improving the efficacy and clinical safety of tumor metabolism inhibitors. This review describes the current understanding of the multifunctional roles of tumor lactic acid, as well as therapeutic approaches targeting lactic acid metabolism, including lactate dehydrogenase and monocarboxylate transporters, for anti-cancer therapy. 10.1007/s12272-023-01431-8
Tumor Microenvironment: Lactic Acid Promotes Tumor Development. Journal of immunology research Lactic acid is a "metabolic waste" product of glycolysis that is produced in the body. However, the role of lactic acid in the development of human malignancies has gained increasing interest lately as a multifunctional small molecule chemical. There is evidence that tumor cells may create a large amount of lactic acid through glycolysis even when they have abundant oxygen. Tumor tissues have a higher quantity of lactic acid than normal tissues. Lactic acid is required for tumor development. Lactate is an immunomodulatory chemical that affects both innate and adaptive immune cells' effector functions. In immune cells, the lactate signaling pathway may potentially serve as a link between metabolism and immunity. Lactate homeostasis is significantly disrupted in the TME. Lactate accumulation results in acidosis, angiogenesis, immunosuppression, and tumor cell proliferation and survival, all of which are deleterious to health. Thus, augmenting anticancer immune responses by lactate metabolism inhibition may modify lactate levels in the tumor microenvironment. This review will evaluate the role of lactic acid in tumor formation, metastasis, prognosis, treatment, and histone modification. Our findings will be of considerable interest to readers, particularly those engaged in the therapeutic treatment of cancer patients. Treatments targeting the inhibition of lactate synthesis and blocking the source of lactate have emerged as a potential new therapeutic option for oncology patients. Additionally, lactic acid levels in the plasma may serve as biomarkers for disease stage and may be beneficial for evaluating therapy effectiveness in individuals with tumors. 10.1155/2022/3119375
Lactic acid in alternative polarization and function of macrophages in tumor microenvironment. Human immunology In developing tumor, macrophages are one major immune infiltrate that not only contributes in shaping up of tumor microenvironment (TME) but also have the potential of determining the fate of tumor in terms of its progression. Phenotypic plasticity of macrophages primarily channelizes them to alternative (M2) form of tumor associated macrophages (TAM) in the TME. One of the key tumor derived components that plays a crucial role in TAM polarization from M1 to M2 form is lactic acid and has prominent role in progression of malignancy. The role of lactic acid as signalling molecule as well as an immunomodulator has recently been recognized. This review focuses on the mechanism and signalling that are involved in lactic acid induced M2 polarization and possible therapeutic strategies for regulating lactic acidosis in TME. 10.1016/j.humimm.2022.02.007
Lactic acid and lactate: revisiting the physiological roles in the tumor microenvironment. Trends in immunology Lactic acid production has been regarded as a mechanism by which malignant cells escape immunosurveillance. Recent technological advances in mass spectrometry and the use of cell culture media with a physiological nutrient composition have shed new light on the role of lactic acid and its conjugate lactate in the tumor microenvironment. Here, we review novel work identifying lactate as a physiological carbon source for mammalian tumors and immune cells. We highlight evidence that its use as a substrate is distinct from the immunosuppressive acidification of the extracellular milieu by lactic acid protons. Together, data suggest that neutralizing the effects of intratumoral acidity while maintaining physiological lactate metabolism in cytotoxic CD8 T cells should be pursued to boost anti-tumor immunity. 10.1016/j.it.2022.10.005
Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nature metabolism Enhanced glycolysis and accumulation of lactate is a common feature in various types of cancer. Intracellular lactate drives a recently described type of posttranslational modification, lysine lactylation (Kla), on core histones. However, the impact of lactylation on biological processes of tumour cells remains largely unknown. Here we show a global lactylome profiling on a prospectively collected hepatitis B virus-related hepatocellular carcinoma (HCC) cohort. Integrative lactylome and proteome analysis of the tumours and adjacent livers identifies 9,275 Kla sites, with 9,256 sites on non-histone proteins, indicating that Kla is a prevalent modification beyond histone proteins and transcriptional regulation. Notably, Kla preferentially affects enzymes involved in metabolic pathways, including the tricarboxylic acid cycle, and carbohydrate, amino acid, fatty acid and nucleotide metabolism. We further verify that lactylation at K28 inhibits the function of adenylate kinase 2, facilitating the proliferation and metastasis of HCC cells. Our study therefore reveals that Kla plays an important role in regulating cellular metabolism and may contribute to HCC progression. 10.1038/s42255-022-00710-w
Metabolic regulation of gene expression by histone lactylation. Zhang Di,Tang Zhanyun,Huang He,Zhou Guolin,Cui Chang,Weng Yejing,Liu Wenchao,Kim Sunjoo,Lee Sangkyu,Perez-Neut Mathew,Ding Jun,Czyz Daniel,Hu Rong,Ye Zhen,He Maomao,Zheng Y George,Shuman Howard A,Dai Lunzhi,Ren Bing,Roeder Robert G,Becker Lev,Zhao Yingming Nature The Warburg effect, which originally described increased production of lactate in cancer, is associated with diverse cellular processes such as angiogenesis, hypoxia, polarization of macrophages and activation of T cells. This phenomenon is intimately linked to several diseases including neoplasia, sepsis and autoimmune diseases. Lactate, which is converted from pyruvate in tumour cells, is widely known as an energy source and metabolic by-product. However, its non-metabolic functions in physiology and disease remain unknown. Here we show that lactate-derived lactylation of histone lysine residues serves as an epigenetic modification that directly stimulates gene transcription from chromatin. We identify 28 lactylation sites on core histones in human and mouse cells. Hypoxia and bacterial challenges induce the production of lactate by glycolysis, and this acts as a precursor that stimulates histone lactylation. Using M1 macrophages that have been exposed to bacteria as a model system, we show that histone lactylation has different temporal dynamics from acetylation. In the late phase of M1 macrophage polarization, increased histone lactylation induces homeostatic genes that are involved in wound healing, including Arg1. Collectively, our results suggest that an endogenous 'lactate clock' in bacterially challenged M1 macrophages turns on gene expression to promote homeostasis. Histone lactylation thus represents an opportunity to improve our understanding of the functions of lactate and its role in diverse pathophysiological conditions, including infection and cancer. 10.1038/s41586-019-1678-1