Ginsenoside Rb1 inhibits ferroptosis to ameliorate hypoxic-ischemic brain damage in neonatal rats.
International immunopharmacology
Hypoxic ischemic encephalopathy (HIE) is among the leading causes of neonatal mortality, and currently there is no effective treatment. Ginsenoside Rb1 (GsRb1) is one of the principal active components of ginseng, and has protective benefits against oxidative stress, inflammation, hypoxic injury, and so on. However, the role and underlying mechanism of GsRb1 on HIE are unclear. Here, we established the neonatal rat hypoxic-ischemic brain damage (HIBD) model in vivo and the PC12 cell oxygen-glucose deprivation (OGD) model in vitro to investigate the neuroprotective effects of GsRb1 on HIE, and illuminate the potential mechanism. Our results showed that GsRb1 and the ferroptosis inhibitor liproxstatin-1 (Lip-1) could significantly restore System Xc activity and antioxidant levels as well as inhibit lipid oxidation levels and inflammatory index levels of HIBD and OGD models. Taken together, GsRb1 might inhibit ferroptosis to exert neuroprotective effects on HIE through alleviating oxidative stress and inflammation, which will set the foundation for future research on ferroptosis by reducing hypoxic-ischemic brain injury and suggest that GsRb1 might be a promising therapeutic agent for HIE.
10.1016/j.intimp.2023.110503
Ginsenoside Rb1 attenuates doxorubicin induced cardiotoxicity by suppressing autophagy and ferroptosis.
Biochemical and biophysical research communications
Ginsenoside Rb1 (Rb1), an active component isolated from traditional Chinese medicine Ginseng, is beneficial to many cardiovascular diseases. However, whether it can protect against doxorubicin induced cardiotoxicity (DIC) is not clear yet. In this study, we aimed to investigate the role of Rb1 in DIC. Mice were injected with a single dose of doxorubicin (20 mg/kg) to induce acute cardiotoxicity. Rb1 was given daily gavage to mice for 7 days. Changes in cardiac function, myocardium histopathology, oxidative stress, cardiomyocyte mitochondrion morphology were studied to evaluate Rb1's function on DIC. Meanwhile, RNA-seq analysis was performed to explore the potential underline molecular mechanism involved in Rb1's function on DIC. We found that Rb1 treatment can improve survival rate and body weight in Dox treated mice group. Rb1 can attenuate Dox induced cardiac dysfunction and myocardium hypertrophy and interstitial fibrosis. The oxidative stress increase and cardiomyocyte mitochondrion injury were improved by Rb1 treatment. Mechanism study found that Rb1's beneficial role in DIC is through suppressing of autophagy and ferroptosis. This study shown that Ginsenoside Rb1 can protect against DIC by regulating autophagy and ferroptosis.
10.1016/j.bbrc.2024.149910
Ginsenoside Rb1 targets to HO-1 to improve sepsis by inhibiting ferroptosis.
Free radical biology & medicine
Sepsis remains the leading cause of mortality among Intensive Care Unit (ICU) patients, with its pathogenesis and treatment not yet fully elucidated. Ferroptosis plays a critical role in sepsis, suggesting that ferroptosis-related genes may serve as potential therapeutic targets. This study aims to identify key ferroptosis-related genes in sepsis and explore targeted therapeutics. Through differential expression analysis of the GSE13940 and GSE26440 datasets, heme oxygenase-1 (HO-1) was identified as a hub gene associated with ferroptosis. Additionally, single-cell analysis of the GSE175453 dataset revealed a significant upregulation of HO-1 expression in monocyte lineages during sepsis. The cecal ligation and puncture (CLP) method was employed to induce sepsis in a mouse model, lung and intestinal tissues exhibited typical ferroptosis characteristics, with a significant increase in HO-1 expression. However, treatment with the HO-1 inhibitor zinc protoporphyrin (ZNPP) significantly ameliorated ferroptosis in CLP-induced lung and intestinal tissues, as well as in lipopolysaccharide (LPS)-induced THP-1 cells. Subsequently, molecular docking, surface plasmon resonance (SPR), and microscale thermophoresis (MST) experiments demonstrated that ginsenoside Rb1 specifically targets HO-1, identifying K18A as the key binding residue. Finally, experiments conducted both in vitro and in vivo verified that ginsenoside Rb1 significantly reduces HO-1 expression, inhibits ferroptosis in sepsis-induced lung, and intestinal tissues and THP-1 cells, and improves sepsis-induced pulmonary and intestinal damage. In conclusion, this study identifies HO-1 as a key ferroptosis target in sepsis and suggests ginsenoside Rb1 as a potential novel HO-1 inhibitor for the therapeutic approach of sepsis-induced organ dysfunction.
10.1016/j.freeradbiomed.2024.11.007
Ginsenoside Rb1 induces hepatic stellate cell ferroptosis to alleviate liver fibrosis via the BECN1/SLC7A11 axis.
Journal of pharmaceutical analysis
Liver fibrosis is primarily driven by the activation of hepatic stellate cells (HSCs), a process associated with ferroptosis. Ginsenoside Rb1 (GRb1), a major active component extracted from Panax ginseng, inhibits HSC activation. However, the potential role of GRb1 in mediating HSC ferroptosis remains unclear. This study examined the effect of GRb1 on liver fibrosis both and , using CCl-induced liver fibrosis mouse model and primary HSCs, LX-2 cells. The findings revealed that GRb1 effectively inactivated HSCs , reducing alpha-smooth muscle actin (α-SMA) and Type I collagen (Col1A1) levels. Moreover, GRb1 significantly alleviated CCl-induced liver fibrosis . From a mechanistic standpoint, the ferroptosis pathway appeared to be central to the antifibrotic effects of GRb1. Specifically, GRb1 promoted HSC ferroptosis both and , characterized by increased glutathione depletion, malondialdehyde production, iron overload, and accumulation of reactive oxygen species (ROS). Intriguingly, GRb1 increased Beclin 1 (BECN1) levels and decreased the System Xc-key subunit SLC7A11. Further experiments showed that BECN1 silencing inhibited GRb1-induced effects on HSC ferroptosis and mitigated the reduction of SLC7A11 caused by GRb1. Moreover, BECN1 could directly interact with SLC7A11, initiating HSC ferroptosis. In conclusion, the suppression of BECN1 counteracted the effects of GRb1 on HSC inactivation both and . Overall, this study highlights the novel role of GRb1 in inducing HSC ferroptosis and promoting HSC inactivation, at least partly through its modulation of BECN1 and SLC7A11.
10.1016/j.jpha.2023.11.009