logo logo
New Cardiovascular Biomarkers in Breast Cancer Patients Undergoing Doxorubicin-Based Chemotherapy. Arquivos brasileiros de cardiologia BACKGROUND:Central Illustration : New Cardiovascular Biomarkers in Breast Cancer Patients Undergoing Doxorubicin-Based Chemotherapy. Cardiovascular diseases (CVDs) are relevant to the management of breast cancer treatment since a substantial number of patients develop these complications after chemotherapy. OBJECTIVE:This study aims to evaluate new cardiovascular biomarkers, namely CXCL-16 (C-X-C motif ligand 16), FABP3 (fatty acid binding protein 3), FABP4 (fatty acid binding protein 4), LIGHT (tumor necrosis factor superfamily member 14/TNFS14), GDF-15 (Growth/differentiation factor 15), sCD4 (soluble form of CD14), and ucMGP (uncarboxylated Matrix Gla-Protein) in breast cancer patients treated with doxorubicin (DOXO). METHODS:This case-control study was conducted in an oncology clinic that included 34 women diagnosed with breast cancer and chemotherapy with DOXO and 34 control women without cancer and CVD. The markers were determined immediately after the last cycle of chemotherapy. The statistical significance level adopted was 5%. RESULTS:The breast cancer group presented higher levels of GDF-15 (p<0.001), while control subjects had higher levels of FABP3 (p=0.038), FABP4 (p=0003), sCD14, and ucMGP (p<0.001 for both). Positive correlations were observed between FABPs and BMI in the cancer group. CONCLUSION:GDF15 is an emerging biomarker with potential clinical applicability in this scenario. FABPs are proteins related to adiposity, which are potentially involved in breast cancer biology. sCD14 and ucMGP engage in inflammatory and vascular calcification. The evaluation of these novel cardiovascular biomarkers could be useful in the management of breast cancer chemotherapy with DOXO. 10.36660/abc.20230167
Diltiazem inhibits breast cancer metastasis via mediating growth differentiation factor 15 and epithelial-mesenchymal transition. Oncogenesis Migration and metastasis commonly happen to triple-negative breast cancer (TNBC) patients with advanced diseases. In many studies, it has been suggested that epithelial-mesenchymal transition (EMT) is one of the key mechanisms triggering cancer metastasis. Accumulating evidence has proven that calcium channel blockers mediate cell motility. Therefore, we attempt to investigate the effects of diltiazem, which has been selected from several FDA-approved clinical calcium channel blockers, on EMT in TNBC. By using both mouse and human TNBC cell lines, we found that diltiazem decreases colony formation and cell migration in breast cancer cells. The expression of epithelial markers such as E-cadherin and ZO-1 were increased dose-dependently by diltiazem, while mesenchymal markers such as Snail and Twist were decreased. In addition, we found that the expression of growth differentiation factor-15 (GDF-15) was also increased by diltiazem. Administering recombinant GDF-15 also reverses EMT, inhibits colony formation and migration in breast cancer cells. Moreover, treatment with diltiazem in tumor-bearing mice also decreases cancer metastasis and nodule formation, with more GDF-15 expression in diltiazem-treated mice than saline-treated mice, respectively. These findings suggest that diltiazem regulates EMT and cell motility through elevating GDF-15 expression in breast cancers in vitro and in vivo. 10.1038/s41389-022-00423-5
Changes in Cardiovascular Biomarkers With Breast Cancer Therapy and Associations With Cardiac Dysfunction. Demissei Biniyam G,Hubbard Rebecca A,Zhang Liyong,Smith Amanda M,Sheline Karyn,McDonald Caitlin,Narayan Vivek,Domchek Susan M,DeMichele Angela,Shah Payal,Clark Amy S,Fox Kevin,Matro Jennifer,Bradbury Angela R,Knollman Hayley,Getz Kelly D,Armenian Saro H,Januzzi James L,Tang W H Wilson,Liu Peter,Ky Bonnie Journal of the American Heart Association Background We examined the longitudinal associations between changes in cardiovascular biomarkers and cancer therapy-related cardiac dysfunction (CTRCD) in patients with breast cancer treated with cardotoxic cancer therapy. Methods and Results Repeated measures of high-sensitivity cardiac troponin T (hs-cTnT), NT-proBNP (N-terminal pro-B-type natriuretic peptide), myeloperoxidase, placental growth factor, and growth differentiation factor 15 were assessed longitudinally in a prospective cohort of 323 patients treated with anthracyclines and/or trastuzumab followed over a maximum of 3.7 years with serial echocardiograms. CTRCD was defined as a ≥10% decline in left ventricular ejection fraction to a value <50%. Associations between changes in biomarkers and left ventricular ejection fraction were evaluated in repeated-measures linear regression models. Cox regression models assessed the associations between biomarkers and CTRCD. Early increases in all biomarkers occurred with anthracycline-based regimens. hs-cTnT levels >14 ng/L at anthracycline completion were associated with a 2-fold increased CTRCD risk (hazard ratio, 2.01; 95% CI, 1.00-4.06). There was a modest association between changes in NT-proBNP and left ventricular ejection fraction in the overall cohort; this was most pronounced with sequential anthracycline and trastuzumab (1.1% left ventricular ejection fraction decline [95% CI, -1.8 to -0.4] with each NT-proBNP doubling). Increases in NT-proBNP were also associated with CTRCD (hazard ratio per doubling, 1.56; 95% CI, 1.32-1.84). Increases in myeloperoxidase were associated with CTRCD in patients who received sequential anthracycline and trastuzumab (hazard ratio per doubling, 1.28; 95% CI, 1.04-1.58). Conclusions Cardiovascular biomarkers may play an important role in CTRCD risk prediction in patients with breast cancer who receive cardiotoxic cancer therapy, particularly in those treated with sequential anthracycline and trastuzumab therapy. Clinical Trial Registration URL: https://www.clinicaltrials.gov/. Unique identifier: NCT01173341. 10.1161/JAHA.119.014708
Aberrant expression of bone morphogenetic proteins in the disease progression and metastasis of breast cancer. Frontiers in oncology Background:Bone morphogenetic proteins (BMPs) play crucial roles in the tumorigenesis and metastasis of cancers. Controversy remains about the exact implications of BMPs and their antagonists in breast cancer (BC), due to their diverse and complex biological functions and signalling. A comprehensive study of the whole family and their signalling in breast cancer is provoked. Methods:Aberrant expression of BMP, BMP receptors and antagonists in primary tumours in breast cancer were analysed by using TCGA-BRCA and E-MTAB-6703 cohorts. Related biomarkers including ER, HER, proliferation, invasion, angiogenesis, lymphangiogenesis and bone metastasis were involved to identify the relationship with BMPs in breast cancer. Results:The present study showed BMP8B was significantly increased in breast tumours, while BMP6 and ACVRL1 were decreased in breast cancer tissues. The expressions of BMP2, BMP6, TGFBR1 and GREM1 were significantly correlated with BC patients' poor overall survival. Aberrant expression of BMPs, together with BMP receptors, were explored in different subtypes of breast cancer according to ER, PR and HER2 status. Furthermore, higher levels of BMP2, BMP6 and GDF5 were revealed in triple negative breast cancer (TNBC) whilst BMP4, GDF15, ACVR1B, ACVR2B and BMPR1B were relatively higher in Luminal type BC. ACVR1B and BMPR1B were positively correlated with ERα but were inversely correlated with ERβ. High expression of GDF15, BMP4 and ACVR1B were associated with poorer overall survival in HER2 positive BC. BMPs also play dual roles in tumour growth and metastasis of BC. Conclusion:A shift pattern of BMPs was showed in different subtypes of breast cancer suggesting a subtype specific involvement. It provokes more research to shed light on the exact role of these BMPs and receptors in the disease progression and distant metastasis through a regulation of proliferation, invasion and EMT. 10.3389/fonc.2023.1166955
Adipocytokines visfatin and resistin in breast cancer: Clinical relevance, biological mechanisms, and therapeutic potential. Wang Yen-Yun,Hung Amos C,Lo Steven,Yuan Shyng-Shiou F Cancer letters Obesity is one of the major modifiable risk factors in breast cancer, with obese adipose tissue showing a pathological role in breast cancer development and malignancy via the release of secretory factors, such as proinflammatory cytokines and adipocytokines. The current article focuses on visfatin and resistin, two such adipocytokines that have emerged over the last two decades as leading breast cancer promoting factors in obesity. The clinical association of circulating visfatin and resistin with breast cancer and their biological mechanisms are reviewed, in addition to their role in the context of tumor-stromal interactions in the breast cancer microenvironment. Recent findings have unraveled several mediators of visfatin and resistin that are involved in the crosstalk between breast cancer cells and adipose tissue in the breast tumor microenvironment, including growth differentiation factor 15 (GDF15), interleukin 6 (IL-6), and toll-like receptor 4 (TLR4). Finally, current therapeutics targeting visfatin and resistin and their respective pathways are discussed, including future therapeutic strategies such as new drug design or neutralizing peptides that target extracellular visfatin or resistin. These hold promise in the development of novel breast cancer therapies and are of increasing relevance as the prevalence of obesity-related breast cancer increases worldwide. 10.1016/j.canlet.2020.10.045
GDF15 Contributes to Radioresistance by Mediating the EMT and Stemness of Breast Cancer Cells. International journal of molecular sciences Radiotherapy is one of the conventional methods for the clinical treatment of breast cancer. However, radioresistance has an adverse effect on the prognosis of breast cancer patients after radiotherapy. In this study, using bioinformatic analysis of GSE59732 and GSE59733 datasets in the Gene Expression Omnibus (GEO) database together with the prognosis database of breast cancer patients after radiotherapy, the gene was screened out to be related to the poor prognosis of breast cancer after radiotherapy. Compared with radiosensitive parental breast cancer cells, breast cancer cells with acquired radioresistance exhibited a high level of GDF15 expression and enhanced epithelial-to-mesenchymal transition (EMT) properties of migration and invasion, as well as obvious stem-like traits, including the increases of mammosphere formation ability, the proportion of stem cells (CD44 CD24 cells), and the expressions of stem cell-related markers (SOX2, NANOG). Moreover, knockdown of sensitized the radioresistance cells to irradiation and significantly inhibited their EMT and stem-like traits, indicating that GDF15 promoted the radioresistance of breast cancer by enhancing the properties of EMT and stemness. Conclusively, GDF15 may be applicable as a novel prognosis-related biomarker and a potential therapeutic target for breast cancer radiotherapy. 10.3390/ijms231810911