logo logo
Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Zhu Ling-Ping,Tian Tian,Wang Jun-Yao,He Jing-Ni,Chen Tong,Pan Miao,Xu Li,Zhang Hui-Xin,Qiu Xue-Ting,Li Chuan-Chang,Wang Kang-Kai,Shen Hong,Zhang Guo-Gang,Bai Yong-Ping Theranostics Exosomes (Exo) secreted from hypoxia-conditioned bone marrow mesenchymal stem cells (BM-MSCs) were found to be protective for ischemic disease. However, the role of exosomal miRNA in the protective effect of hypoxia-conditioned BM-MSCs-derived Exo (Hypo-Exo) remains largely uncharacterized and the poor specificity of tissue targeting of Exo limits their clinical applications. Therefore, the objective of this study was to examine the effect of miRNA in Hypo-Exo on the repair of ischemic myocardium and its underlying mechanisms. We further developed modified Hypo-Exo with high specificity to the myocardium and evaluate its therapeutic effects. Murine BM-MSCs were subjected to hypoxia or normoxia culture and Exo were subsequently collected. Hypo-Exo or normoxia-conditioned BM-MSC-derived Exo (Nor-Exo) were administered to mice with permanent condition of myocardial infarction (MI). After 28 days, to evaluate the therapeutic effects of Hypo-Exo, infarction area and cardio output in Hypo-Exo and Nor-Exo treated MI mice were compared through Masson's trichrome staining and echocardiography respectively. We utilized the miRNA array to identify the significantly differentially expressed miRNAs between Nor-Exo and Hypo-Exo. One of the most enriched miRNA in Hypo-Exo was knockdown by applying antimiR in Hypoxia-conditioned BM-MSCs. Then we performed intramyocardial injection of candidate miRNA-knockdown-Hypo-Exo in a murine MI model, changes in the candidate miRNA's targets expression of cardiomyocytes and the cardiac function were characterized. We conjugated Hypo-Exo with an ischemic myocardium-targeted (IMT) peptide by bio-orthogonal chemistry, and tested its targeting specificity and therapeutic efficiency via systemic administration in the MI mice. The miRNA array revealed significant enrichment of miR-125b-5p in Hypo-Exo compared with Nor-Exo. Administration of miR-125b knockdown Hypo-Exo significantly increased the infarction area and suppressed cardiomyocyte survival post-MI. Mechanistically, miR-125b knockdown Hypo-Exo lost the capability to suppress the expression of the proapoptotic genes and in cardiomyocytes. Intravenous administration of IMT-conjugated Hypo-Exo (IMT-Exo) showed specific targeting to the ischemic lesions in the injured heart and exerted a marked cardioprotective function post-MI. Our results illustrate a new mechanism by which Hypo-Exo-derived miR125b-5p facilitates ischemic cardiac repair by ameliorating cardiomyocyte apoptosis. Furthermore, our IMT- Exo may serve as a novel drug carrier that enhances the specificity of drug delivery for ischemic disease. 10.7150/thno.28021
Small extracellular vesicles obtained from hypoxic mesenchymal stromal cells have unique characteristics that promote cerebral angiogenesis, brain remodeling and neurological recovery after focal cerebral ischemia in mice. Basic research in cardiology Obtained from the right cell-type, mesenchymal stromal cell (MSC)-derived small extracellular vesicles (sEVs) promote stroke recovery. Within this process, microvascular remodeling plays a central role. Herein, we evaluated the effects of MSC-sEVs on the proliferation, migration, and tube formation of human cerebral microvascular endothelial cells (hCMEC/D3) in vitro and on post-ischemic angiogenesis, brain remodeling and neurological recovery after middle cerebral artery occlusion (MCAO) in mice. In vitro, sEVs obtained from hypoxic (1% O), but not 'normoxic' (21% O) MSCs dose-dependently promoted endothelial proliferation, migration, and tube formation and increased post-ischemic endothelial survival. sEVs from hypoxic MSCs regulated a distinct set of miRNAs in hCMEC/D3 cells previously linked to angiogenesis, three being upregulated (miR-126-3p, miR-140-5p, let-7c-5p) and three downregulated (miR-186-5p, miR-370-3p, miR-409-3p). LC/MS-MS revealed 52 proteins differentially abundant in sEVs from hypoxic and 'normoxic' MSCs. 19 proteins were enriched (among them proteins involved in extracellular matrix-receptor interaction, focal adhesion, leukocyte transendothelial migration, protein digestion, and absorption), and 33 proteins reduced (among them proteins associated with metabolic pathways, extracellular matrix-receptor interaction, focal adhesion, and actin cytoskeleton) in hypoxic MSC-sEVs. Post-MCAO, sEVs from hypoxic MSCs increased microvascular length and branching point density in previously ischemic tissue assessed by 3D light sheet microscopy over up to 56 days, reduced delayed neuronal degeneration and brain atrophy, and enhanced neurological recovery. sEV-induced angiogenesis in vivo depended on the presence of polymorphonuclear neutrophils. In neutrophil-depleted mice, MSC-sEVs did not influence microvascular remodeling. sEVs from hypoxic MSCs have distinct angiogenic properties. Hypoxic preconditioning enhances the restorative effects of MSC-sEVs. 10.1007/s00395-021-00881-9
Sequential transplantation of exosomes and BMSCs pretreated with hypoxia efficiently facilitates perforator skin flap survival area in rats. The British journal of oral & maxillofacial surgery Bone marrow mesenchymal stem cells (BMSC) are promising candidates for the treatment of trans-territory perforator flap necrosis. However, the low retention and survival rate of engrafted BMSCs limit their therapeutic efficacy. Strategies either modifying BMSCs or alleviating the inflammatory environment may solve this problem. Thus, we aimed to explore the therapeutic efficacy of sequential transplantation of exosomes and hypoxia pretreated BMSCs on flap necrosis. After the perforator flap model was created, the exosomes derived from BMSCs were injected immediately into choke zone II followed by transplantation of hypoxia pretreated BMSCs on Day 2. Gross view was performed to assess the flap survival, enzyme-linked immunosorbent assay was performed to evaluate the inflammatory factor level, microvessel number was assessed and quantitative polymerase chain reaction (qPCR) was performed to assess angiogenesis. We found that exosome delivery significantly reduced inflammatory cytokines levels on Day 1 and Day 3 and promoted the engrafted BMSCs' survival on Day 7. After combining with transplantation of hypoxia pretreated BMSCs, the flap survival rate and the angiogenesis-related gene expression were significantly higher than in the other three groups; the von Willebrand factor (vWF) vascular diameter and vWF vascular count were significantly higher than in the phosphate buffered saline (PBS) group. Thus, we concluded that sequential transplantation of exosomes and BMSCs combinatorially pretreated with hypoxia further facilitated flap survival. This sequential transplantation approach provides novel insights into the clinical treatment of flap necrosis. 10.1016/j.bjoms.2023.12.012
Extracellular Vesicles from Healthy Cells Improves Cell Function and Stemness in Premature Senescent Stem Cells by miR-302b and HIF-1α Activation. Mas-Bargues Cristina,Sanz-Ros Jorge,Román-Domínguez Aurora,Gimeno-Mallench Lucia,Inglés Marta,Viña José,Borrás Consuelo Biomolecules Aging is accompanied by the accumulation of senescent cells that alter intercellular communication, thereby impairing tissue homeostasis and reducing organ regenerative potential. Recently, the administration of mesenchymal stem cells (MSC)-derived extracellular vesicles has proven to be more effective and less challenging than current stem cell-based therapies. Extracellular vesicles (EVs) contain a cell-specific cargo of proteins, lipids and nucleic acids that are released and taken up by probably all cell types, thereby inducing functional changes via the horizontal transfer of their cargo. Here, we describe the beneficial properties of extracellular vesicles derived from non-senescent MSC, cultured in a low physiological oxygen tension (3%) microenvironment into prematurely senescent MSC, cultured in a hyperoxic ambient (usual oxygen culture conditions, i.e., 21%). We observed that senescent MCS, treated with EVs from non-senescent MCS, showed reduced SA-β-galactosidase activity levels and pluripotency factor (OCT4, SOX2, KLF4 and cMYC, or OSKM) overexpression and increased glycolysis, as well as reduced oxidative phosphorylation (OXPHOS). Moreover, these EVs' cargo induced the upregulation of miR-302b and HIF-1α levels in the target cells. We propose that miR-302b triggered HIF-1α upregulation, which in turn activated different pathways to delay premature senescence, improve stemness and switch energetic metabolism towards glycolysis. Taken together, we suggest that EVs could be a powerful tool to restore altered intercellular communication and improve stem cell function and stemness, thus delaying stem cell exhaustion in aging. 10.3390/biom10060957
Stem cell-derived exosome patch with coronary artery bypass graft restores cardiac function in chronically ischemic porcine myocardium. The Journal of thoracic and cardiovascular surgery OBJECTIVE:This study aimed to investigate whether or not the application of a stem cell-derived exosome-laden collagen patch (EXP) during coronary artery bypass grafting (CABG) can recover cardiac function by modulating mitochondrial bioenergetics and myocardial inflammation in hibernating myocardium (HIB), which is defined as myocardium with reduced blood flow and function that retains viability and variable contractile reserve. METHODS:In vitro methods involved exposing H9C2 cardiomyocytes to hypoxia followed by normoxic coculture with porcine mesenchymal stem cells. Mitochondrial respiration was measured using Seahorse assay. GW4869, an exosomal release antagonist, was used to determine the effect of mesenchymal stem cells-derived exosomal signaling on cardiomyocyte recovery. Total exosomal RNA was isolated and differential micro RNA expression determined by sequencing. In vivo studies comprised 48 Yorkshire-Landrace juvenile swine (6 normal controls, 17 HIB, 19 CABG, and 6 CABG + EXP), which were compared for physiologic and metabolic changes. HIB was created by placing a constrictor on the proximal left anterior descending artery, causing significant stenosis but preserved viability by 12 weeks. CABG was performed with or without mesenchymal stem cells-derived EXP application and animals recovered for 4 weeks. Before terminal procedure, cardiac magnetic resonance imaging at rest, and with low-dose dobutamine, assessed diastolic relaxation, systolic function, graft patency, and myocardial viability. Tissue studies of inflammation, fibrosis, and mitochondrial morphology were performed posttermination. RESULTS:In vitro data demonstrated improved cardiomyocyte mitochondrial respiration upon coculture with MSCs that was blunted when adding the exosomal antagonist GW4869. RNA sequencing identified 8 differentially expressed micro RNAs in normoxia vs hypoxia-induced exosomes that may modulate the expression of key mitochondrial (peroxisome proliferator-activator receptor gamma coactivator 1-alpha and adenosine triphosphate synthase) and inflammatory mediators (nuclear factor kappa-light-chain enhancer of activated B cells, interferon gamma, and interleukin 1β). In vivo animal magnetic resonance imaging studies demonstrated regional systolic function and diastolic relaxation to be improved with CABG + EXP compared with HIB (P = .02 and P = .02, respectively). Histologic analysis showed increased interstitial fibrosis and inflammation in HIB compared with CABG + EXP. Electron microscopy demonstrated increased mitochondrial area, perimeter, and aspect ratio in CABG + EXP compared with HIB or CABG alone (P < .0001). CONCLUSIONS:Exosomes recovered cardiomyocyte mitochondrial respiration and reduced myocardial inflammation through paracrine signaling, resulting in improved cardiac function. 10.1016/j.jtcvs.2023.07.014
Pro-Inflammatory Priming of Umbilical Cord Mesenchymal Stromal Cells Alters the Protein Cargo of Their Extracellular Vesicles. Hyland Mairead,Mennan Claire,Wilson Emma,Clayton Aled,Kehoe Oksana Cells Umbilical cord mesenchymal stromal cells (UCMSCs) have shown an ability to modulate the immune system through the secretion of paracrine mediators, such as extracellular vesicles (EVs). However, the culture conditions that UCMSCs are grown in can alter their secretome and thereby affect their immunomodulatory potential. UCMSCs are commonly cultured at 21% O in vitro, but recent research is exploring their growth at lower oxygen conditions to emulate circulating oxygen levels in vivo. Additionally, a pro-inflammatory culture environment is known to enhance UCMSC anti-inflammatory potential. Therefore, this paper examined EVs from UCMSCs grown in normal oxygen (21% O), low oxygen (5% O) and pro-inflammatory conditions to see the impact of culture conditions on the EV profile. EVs were isolated from UCMSC conditioned media and characterised based on size, morphology and surface marker expression. EV protein cargo was analysed using a proximity-based extension assay. Results showed that EVs had a similar size and morphology. Differences were found in EV protein cargo, with pro-inflammatory primed EVs showing an increase in proteins associated with chemotaxis and angiogenesis. This showed that the UCMSC culture environment could alter the EV protein profile and might have downstream implications for their functions in immunomodulation. 10.3390/cells9030726
Characterization of human cardiac mesenchymal stromal cells and their extracellular vesicles comparing with human bone marrow derived mesenchymal stem cells. Kang In Sook,Suh Joowon,Lee Mi-Ni,Lee Chaeyoung,Jin Jing,Lee Changjin,Yang Young Il,Jang Yangsoo,Oh Goo Taeg BMB reports Cardiac regeneration with adult stem-cell (ASC) therapy is a promising field to address advanced cardiovascular diseases. In addition, extracellular vesicles (EVs) from ASCs have been implicated in acting as paracrine factors to improve cardiac functions in ASC therapy. In our work, we isolated human cardiac mesenchymal stromal cells (h-CMSCs) by means of three-dimensional organ culture (3D culture) during ex vivo expansion of cardiac tissue, to compare the functional efficacy with human bone-marrow derived mesenchymal stem cells (h-BM-MSCs), one of the actively studied ASCs. We characterized the h-CMSCs as CD90low, c-kit, CD105 phenotype and these cells express NANOG, SOX2, and GATA4. To identify the more effective type of EVs for angiogenesis among the different sources of ASCs, we isolated EVs which were derived from CMSCs with either normoxic or hypoxic condition and BM-MSCs. Our in vitro tube-formation results demonstrated that the angiogenic effects of EVs from hypoxia-treated CMSCs (CMSC-Hpx EVs) were greater than the well-known effects of EVs from BM-MSCs (BM-MSC EVs), and these were even comparable to human vascular endothelial growth factor (hVEGF), a potent angiogenic factor. Therefore, we present here that CD90c-kitCD105 CMSCs under hypoxic conditions secrete functionally superior EVs for in vitro angiogenesis. Our findings will allow more insights on understanding myocardial repair. [BMB Reports 2020; 53(2): 118-123].
Adipose-Derived Mesenchymal Stromal Cells Under Hypoxia: Changes in Extracellular Vesicles Secretion and Improvement of Renal Recovery after Ischemic Injury. Collino Federica,Lopes Jarlene Alécia,Corrêa Stephany,Abdelhay Eliana,Takiya Christina Maeda,Wendt Camila Hübner Costabile,de Miranda Kildare Rocha,Vieyra Adalberto,Lindoso Rafael Soares Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology BACKGROUND/AIMS:The therapeutic potential of extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) in kidney injury has been largely reported. However, new approaches are necessary to optimize the efficacy in the treatment of renal diseases. MSCs physiologically are under a low O partial pressure (pO), and culturing adipose-derived MSCs (ADMSCs) in hypoxia alters their secretory paracrine properties. The aim of this study was to evaluate whether hypoxia preconditioning of ADMSCs alters the properties of secreted EVs to improve renal recovery after ischemia-reperfusion injury (IRI). METHODS:The supernatants of ADMSCs cultivated under 21% pO (control) or 1% pO (hypoxia) were ultracentrifuged for EVs isolation that were posteriorly characterized by flow cytometry and electron microscopy. The uptake and effects of these EVs were analyzed by using in vitro and in vivo models. HK-2 renal tubule cell line was submitted do ATP depletion injury model. Proteomic analyses of these cells treated with EVs after injury were performed by nano-UPLC tandem nano-ESI-HDMSE method. For in vivo analyses, male Wistar rats were submitted to 45 min bilateral ischemia, followed by renal intracapsular administration of ADMSC-EVs within a 72 h reperfusion period. Histological, immunohistochemical and qRT-PCR analysis of these kidneys were performed to evaluate cell death, inflammation and oxidative stress. Kidney function was evaluated by measuring the blood levels of creatinine and urea. RESULTS:The results demonstrate that hypoxia increases the ADMSCs capacity to secrete EVs that trigger different energy supply, antiapoptotic, immunomodulatory, angiogenic and anti-oxidative stress responses in renal tissue compared with EVs secreted in normoxia. Proteomic analyses of renal tubule cells treated with EVs from ADMSCs in normoxia and hypoxia give a specific signature of modulated proteins for each type of EVs, indicating regulation of distinct biological processes. CONCLUSION:In summary, hypoxia potentially offers an interesting strategy to enhance the properties of EVs in the treatment of acute kidney disease. 10.33594/000000102
Multifunctional MXene-modified GelMA hydrogel loaded with hypoxia-induced mesenchymal stem cells derived extracellular vesicles alleviates allergic rhinitis in mice. International journal of biological macromolecules Allergic rhinitis (AR) has gained an increasing prevalence over the years, a more effective and safe treatment strategy need to be carried out. Hypoxia induced Mesenchymal stem cell derived extracellular vesicles (hEVs) have shown great therapeutic potential for AR, however, their low bioavailability through systemic administration decreased efficacy in clinical application. In the current study, an MXene-modified GelMA hydrogel was developed as a sustained release platform for hEVs. The hEVs-loaded MXene-modified GelMA hydrogel (hEVs@M-GelMA hydrogel) we prepared had rich porous structure, good hydrophilicity, biocompatibility and antibacterial properties, and showed significant inhibitory effect on the generation of reactive oxygen species in vitro. By using AR mice model, we verified that hEVs@M-GelMA hydrogel significantly alleviated AR symptoms, reduced local eosinophil infiltration, inhibited the intensity of nasal oxidative stress response, suppressed the production of OVA-sIgE in blood, decreased IL-4 secretion and promoted IL-10 and IFN-γ expression. This study provides a novel delivery platform for MSC-EVs-based AR therapy. 10.1016/j.ijbiomac.2024.136485
Epigenetic Reprogramming via Synergistic Hypomethylation and Hypoxia Enhances the Therapeutic Efficacy of Mesenchymal Stem Cell Extracellular Vesicles for Bone Repair. International journal of molecular sciences Mesenchymal stem cells (MSCs) are a promising cell population for regenerative medicine applications, where paracrine signalling through the extracellular vesicles (EVs) regulates bone tissue homeostasis and development. MSCs are known to reside in low oxygen tension, which promotes osteogenic differentiation via hypoxia-inducible factor-1α activation. Epigenetic reprogramming has emerged as a promising bioengineering strategy to enhance MSC differentiation. Particularly, the process of hypomethylation may enhance osteogenesis through gene activation. Therefore, this study aimed to investigate the synergistic effects of inducing hypomethylation and hypoxia on improving the therapeutic efficacy of EVs derived from human bone marrow MSCs (hBMSCs). The effects of the hypoxia mimetic agent deferoxamine (DFO) and the DNA methyltransferase inhibitor 5-azacytidine (AZT) on hBMSC viability was assessed by quantifying the DNA content. The epigenetic functionality was evaluated by assessing histone acetylation and histone methylation. hBMSC mineralisation was determined by quantifying alkaline phosphate activity, collagen production and calcium deposition. EVs were procured from AZT, DFO or AZT/DFO-treated hBMSCs over a two-week period, with EV size and concentration defined using transmission electron microscopy, nanoflow cytometry and dynamic light scattering. The effects of AZT-EVs, DFO-EVs or AZT/DFO-EVs on the epigenetic functionality and mineralisation of hBMSCs were evaluated. Moreover, the effects of hBMSC-EVs on human umbilical cord vein endothelial cells (HUVECs) angiogenesis was assessed by quantifying pro-angiogenic cytokine release. DFO and AZT caused a time-dose dependent reduction in hBMSC viability. Pre-treatment with AZT, DFO or AZT/DFO augmented the epigenetic functionality of the MSCs through increases in histone acetylation and hypomethylation. AZT, DFO and AZT/DFO pre-treatment significantly enhanced extracellular matrix collagen production and mineralisation in hBMSCs. EVs derived from AZT/DFO-preconditioned hBMSCs (AZT/DFO-EVs) enhanced the hBMSC proliferation, histone acetylation and hypomethylation when compared to EVs derived from AZT-treated, DFO-treated and untreated hBMSCs. Importantly, AZT/DFO-EVs significantly increased osteogenic differentiation and mineralisation of a secondary hBMSC population. Furthermore, AZT/DFO-EVs enhanced the pro-angiogenic cytokine release of HUVECs. Taken together, our findings demonstrate the considerable utility of synergistically inducing hypomethylation and hypoxia to improve the therapeutic efficacy of the MSC-EVs as a cell-free approach for bone regeneration. 10.3390/ijms24087564
Hypoxia-preconditioned WJ-MSC spheroid-derived exosomes delivering miR-210 for renal cell restoration in hypoxia-reoxygenation injury. Stem cell research & therapy BACKGROUND:Recent advancements in mesenchymal stem cell (MSC) technology have paved the way for innovative treatment options for various diseases. These stem cells play a crucial role in tissue regeneration and repair, releasing local anti-inflammatory and healing signals. However, challenges such as homing issues and tumorigenicity have led to exploring MSC-exosomes as a promising alternative. MSC-exosomes have shown therapeutic potential in conditions like renal ischemia-reperfusion injury, but low production yields hinder their clinical use. METHODS:To address this limitation, we examined hypoxic preconditioning of Wharton jelly-derived MSCs (WJ-MSCs) 3D-cultured in spheroids on isolated exosome yields and miR-21 expression. We then evaluated their capacity to load miR-210 into HEK-293 cells and mitigate ROS production, consequently enhancing their survival and migration under hypoxia-reoxygenation conditions. RESULTS:MiR-210 overexpression was significantly induced by optimized culture and preconditioning conditions, which also improved the production yield of exosomes from grown MSCs. The exosomes enriched with miR-210 demonstrated a protective effect by improving survival, reducing apoptosis and ROS accumulation in damaged renal cells, and ultimately promoting cell migration. CONCLUSION:The present study underscores the possibility of employing advanced techniques to maximize the therapeutic attributes of exosomes produced from WJ-MSC spheroid for improved recovery outcomes in ischemia-reperfusion injuries. 10.1186/s13287-024-03845-7
Hypoxia-Conditioned Mesenchymal Stem Cells in Tissue Regeneration Application. Tissue engineering. Part B, Reviews Mesenchymal stem cells (MSCs) have been demonstrated as promising cell sources for tissue regeneration due to their capability of self-regeneration, differentiation, and immunomodulation. MSCs also exert extensive paracrine effects through release of trophic factors and extracellular vesicles (EVs). However, despite extended exploration of MSCs in preclinical studies, the results are far from satisfactory due to the poor engraftment and low level of survival after implantation. Hypoxia preconditioning has been proposed as an engineering approach to improve the therapeutic potential of MSCs. During culture, hypoxic conditions can promote MSC proliferation, survival, and migration through various cellular responses to the reduction of oxygen tension. The multilineage differentiation potential of MSCs is altered under hypoxia, with consistent reports of enhanced chondrogenesis. Hypoxia also stimulates the paracrine activities of MSCs and increases the production of secretome both in terms of soluble factors as well as EVs. The secretome from hypoxia-preconditioned MSCs play important roles in promoting cell proliferation and migration, enhancing angiogenesis while inhibiting apoptosis and inflammation. In this review, we summarize current knowledge of hypoxia-induced changes in MSCs and discuss the application of hypoxia-preconditioned MSCs as well as hypoxic secretome in different kinds of disease models. Impact statement Mesenchymal stem cells (MSCs) have been applied in numerous cell-based and secretome-based therapies for tissue regeneration. Hypoxic conditions enhance the function of MSCs by increasing proliferation, survival, homing, differentiation, and paracrine activities. A timely up-to-date comprehensive overview of the effect of low oxygen tension to MSC, with emphasis on the influence and molecular mechanism of hypoxia preconditioning toward MSC's functionality is provided, including the therapeutic use of hypoxia-preconditioned MSC as well as hypoxic secretome in various prove-of-concept disease models. This knowledge would contribute to future engineering of MSC culture conditions for improved translational application. 10.1089/ten.TEB.2021.0145
Extracellular Vehicles of Oxygen-Depleted Mesenchymal Stromal Cells: Route to Off-Shelf Cellular Therapeutics? Gala Dhir,Mohak Sidhesh,Fábián Zsolt Cells Cellular therapy is a promising tool of human medicine to successfully treat complex and challenging pathologies such as cardiovascular diseases or chronic inflammatory conditions. Bone marrow-derived mesenchymal stromal cells (BMSCs) are in the limelight of these efforts, initially, trying to exploit their natural properties by direct transplantation. Extensive research on the therapeutic use of BMSCs shed light on a number of key aspects of BMSC physiology including the importance of oxygen in the control of BMSC phenotype. These efforts also led to a growing number of evidence indicating that the beneficial therapeutic effects of BMSCs can be mediated by BMSC-secreted agents. Further investigations revealed that BMSC-excreted extracellular vesicles could mediate the potentially therapeutic effects of BMSCs. Here, we review our current understanding of the relationship between low oxygen conditions and the effects of BMSC-secreted extracellular vesicles focusing on the possible medical relevance of this interplay. 10.3390/cells10092199
EGCG inhibits the inflammation and senescence inducing properties of MDA-MB-231 triple-negative breast cancer (TNBC) cells-derived extracellular vesicles in human adipose-derived mesenchymal stem cells. Cancer cell international BACKGROUND:Triple-negative breast cancer (TNBC) cells' secretome can induce a pro-inflammatory phenotype in human adipose-derived mesenchymal stem cells (hADMSC). This can be prevented by the green tea polyphenol epigallocatechin-3-gallate (EGCG). The impact of EGCG on the paracrine regulation that the extracellular vesicles (EVs) specifically exert within the TNBC secretome remains unknown. METHODS:EVs were obtained from a TNBC-derived serum-starved MDA-MB-231 cell model treated or not with EGCG under normoxic or hypoxic (< 1% O) culture conditions. RNA-Seq analysis was used to assess the EVs' genetic content. The modulation of inflammatory and senescence markers in hADMSC was evaluated by RT-qPCR using cDNA arrays and validated by immunoblotting. A protein profiler phospho-kinase array was used to explore signaling pathways. RESULTS:While hypoxic culture conditions did not significantly alter the genetic content of MDA-MB-231-secreted EVs, the addition of EGCG significantly modified EVs genetic material at low oxygen tension. Gene expression of cancer-associated adipocyte pro-inflammatory markers CXCL8, CCL2 and IL-1β was increased in hADMSC treated with EVs. Concomitantly, EVs isolated from MDA-MB-231 treated with EGCG (EGCG-EVs) downregulated CCL2 and IL-1β, while inducing higher expression of CXCL8 and IL-6 levels. EVs activated CHK-2, c-Jun, AKT and GSK-3β signaling pathways in hADMSC, whereas EGCG-EVs specifically reduced the latter two as well as the serum starvation-induced senescence markers p21 and β-galactosidase. Finally, the mitochondrial content within the TNBC cells-derived EVs was found reduced upon EGCG treatment. CONCLUSION:This proof of concept study demonstrates that the chemopreventive properties of diet-derived polyphenols may efficiently target the paracrine regulation that TNBC cells could exert upon their surrounding adipose tissue microenvironment. 10.1186/s12935-023-03087-2
Apoptotic extracellular vesicles derived from hypoxia-preconditioned mesenchymal stem cells within a modified gelatine hydrogel promote osteochondral regeneration by enhancing stem cell activity and regulating immunity. Journal of nanobiotechnology Due to its unique structure, articular cartilage has limited abilities to undergo self-repair after injury. Additionally, the repair of articular cartilage after injury has always been a difficult problem in the field of sports medicine. Previous studies have shown that the therapeutic use of mesenchymal stem cells (MSCs) and their extracellular vesicles (EVs) has great potential for promoting cartilage repair. Recent studies have demonstrated that most transplanted stem cells undergo apoptosis in vivo, and the apoptotic EVs (ApoEVs) that are subsequently generated play crucial roles in tissue repair. Additionally, MSCs are known to exist under low-oxygen conditions in the physiological environment, and these hypoxic conditions can alter the functional and secretory properties of MSCs as well as their secretomes. This study aimed to investigate whether ApoEVs that are isolated from adipose-derived MSCs cultured under hypoxic conditions (hypoxic apoptotic EVs [H-ApoEVs]) exert greater effects on cartilage repair than those that are isolated from cells cultured under normoxic conditions. Through in vitro cell proliferation and migration experiments, we demonstrated that H-ApoEVs exerted enhanced effects on stem cell proliferation, stem cell migration, and bone marrow derived macrophages (BMDMs) M polarization compared to ApoEVs. Furthermore, we utilized a modified gelatine matrix/3D-printed extracellular matrix (ECM) scaffold complex as a carrier to deliver H-ApoEVs into the joint cavity, thus establishing a cartilage regeneration system. The 3D-printed ECM scaffold provided mechanical support and created a microenvironment that was conducive to cartilage regeneration, and the H-ApoEVs further enhanced the regenerative capacity of endogenous stem cells and the immunomodulatory microenvironment of the joint cavity; thus, this approach significantly promoted cartilage repair. In conclusion, this study confirmed that a ApoEVs delivery system based on a modified gelatine matrix/3D-printed ECM scaffold together with hypoxic preconditioning enhances the functionality of stem cell-derived ApoEVs and represents a promising approach for promoting cartilage regeneration. 10.1186/s12951-024-02333-7