logo logo
PEEK High Performance Polymers: A Review of Properties and Clinical Applications in Prosthodontics and Restorative Dentistry. Alexakou E,Damanaki M,Zoidis P,Bakiri E,Mouzis N,Smidt G,Kourtis S The European journal of prosthodontics and restorative dentistry Various materials have been used over time in prosthetic dentistry. However, due to the evolution of science and knowledge, new materials are being brought to the forefront. Polyether ether ketone (PEEK) is a polymer with many potential applications in dentistry. The use of PEEK has become increasingly more common in dental practice; its favorable properties have made it a compelling alternative biomaterial in restorative dentistry. The current trend is moving towards the use of metal-free restorations and biomaterials which exhibit advanced properties in the complex oral environment. This review paper presents and summarizes clinical applications of PEEK in contemporary dentistry. 10.1922/EJPRD_01892Zoidis09
PEEK Biomaterial in Long-Term Provisional Implant Restorations: A Review. Journal of functional biomaterials Polyetheretherketone (PEEK) has become a useful polymeric biomaterial due to its superior properties and has been increasingly used in dentistry, especially in prosthetic dentistry and dental implantology. Promising applications of PEEK in dentistry are dental implants, temporary abutment, implant-supported provisional crowns, fixed prosthesis, removable denture framework, and finger prosthesis. PEEK as a long-term provisional implant restoration has not been studied much. Hence, this review article aims to review PEEK as a long-term provisional implant restoration for applications focusing on implant dentistry. Articles published in English on PEEK biomaterial for long-term provisional implant restoration were searched in Google Scholar, ScienceDirect, PubMed/MEDLINE, and Scopus. Then, relevant articles were selected and included in this literature review. PEEK presents suitable properties for various implant components in implant dentistry, including temporary and long-term provisional restorations. The modifications of PEEK result in wider applications in clinical dentistry. The PEEK reinforced by 30-50% carbon fibers can be a suitable material for the various implant components in dentistry. 10.3390/jfb13020033
In Vitro Assessment of the Cell Metabolic Activity, Cytotoxicity, Cell Attachment, and Inflammatory Reaction of Human Oral Fibroblasts on Polyetheretherketone (PEEK) Implant-Abutment. Peng Tzu-Yu,Shih Yin-Hwa,Hsia Shih-Min,Wang Tong-Hong,Li Po-Jung,Lin Dan-Jae,Sun Kuo-Ting,Chiu Kuo-Chou,Shieh Tzong-Ming Polymers The purpose of this research is to compare the cytotoxicity of polyetheretherketone (PEEK) and polyetherketoneketone (PEKK) with conventional dental implant-abutment materials, namely titanium alloy (Ti-6Al-4V) and yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), to evaluate the cell metabolic activity, cytotoxicity, and inflammation potential of human oral fibroblasts (HOF) on these materials. Disk-shaped specimens were designed and prepared via a dental computer-aided manufacturing technology system. Surface topography, roughness, and free energy were investigated by atomic force microscope and contact angle analyzer; cell metabolic activity and cytotoxicity by MTT assay; and morphological changes by scanning electron microscopy (SEM). The effect of pro-inflammatory gene expression was evaluated by RT-qPCR. The obtained data were analyzed with one-way analysis of variance and post-hoc Tukey's honest significant difference tests. PEEK and PEKK exhibited higher submicron surface roughness (0.04 μm) and hydrophobicity (>80°) than the control. Although the cell activity of PEEK was lower than that of Ti-6Al-4V and Y-TZP for the first 24 h ( < 0.05), after 48 h there was no difference ( > 0.05). According to the cell cytotoxicity and the pro-inflammatory cytokine gene expression assays, there was no difference between the materials ( > 0.05). SEM observations indicated that HOF adhered poorly to PEKK but properly to Ti-6Al-4V, Y-TZP, and PEEK. PEEK and PEKK show comparable epithelial biological responses to Ti-6Al-4V and Y-TZP as implant-abutment materials. Between the two polymeric materials, the PEEK surface, where the HOF showed better cell metabolic activity and cytotoxicity, was a more promising implant-abutment material. 10.3390/polym13172995
Maximum insertion torque of a novel implant-abutment-interface design for PEEK dental implants. Schwitalla Andreas Dominik,Zimmermann Tycho,Spintig Tobias,Abou-Emara Mohamed,Lackmann Justus,Müller Wolf-Dieter,Houshmand Alireza Journal of the mechanical behavior of biomedical materials Frequent reports attest to the various advantages of tapered implant/abutment interfaces (IAIs) compared to other types of interfaces. For this reason, a conical IAI was designed as part of the development of a PEEK (polyetheretherketone)-based dental implant. This IAI is equipped with an apically displaced anti-rotation lock with minimal space requirements in the form of an internal spline. The objective of this study was the determination of the average insertion torque (IT) at failure of this design, so as to determine its suitability for immediate loading, which requires a minimum IT of 32Ncm. 10 implants each made of unfilled PEEK, carbon fiber reinforced ("CFR") PEEK (> 50vol% continuous axially parallel fibers) as well as of titanium were produced and tested in a torque test bench. The average IT values at failure of the unfilled PEEK implants were measured at 22.6 ± 0.5Ncm and were significantly higher than those of the CFR-Implants (20.2 ± 2.5Ncm). The average IT values at failure of the titanium specimens were significantly higher (92.6 ± 2.3Ncm) than those of the two PEEK variants. PEEK- and CFR-PEEK-implants in the present form cannot adequately withstand the insertion force needed to achieve primary stability for immediate loading. Nevertheless, the achievable torque resilience of the two PEEK-variants may be sufficient for a two-stage implantation procedure. To improve the torque resistance of the PEEK implant material the development of a new manufacturing procedure is necessary which reinforces the PEEK base with continuous multi-directional carbon fibers as opposed to the axially parallel fibers of the tested PEEK compound. 10.1016/j.jmbbm.2017.09.005
PEEK for Oral Applications: Recent Advances in Mechanical and Adhesive Properties. Polymers Polyetheretherketone (PEEK) is a thermoplastic material widely used in engineering applications due to its good biomechanical properties and high temperature stability. Compared to traditional metal and ceramic dental materials, PEEK dental implants exhibit less stress shielding, thus better matching the mechanical properties of bone. As a promising medical material, PEEK can be used as implant abutments, removable and fixed prostheses, and maxillofacial prostheses. It can be blended with materials such as fibers and ceramics to improve its mechanical strength for better clinical dental applications. Compared to conventional pressed and CAD/CAM milling fabrication, 3D-printed PEEK exhibits excellent flexural and tensile strength and parameters such as printing temperature and speed can affect its mechanical properties. However, the bioinert nature of PEEK can make adhesive bonding difficult. The bond strength can be improved by roughening or introducing functional groups on the PEEK surface by sandblasting, acid etching, plasma treatment, laser treatment, and adhesive systems. This paper provides a comprehensive overview of the research progress on the mechanical properties of PEEK for dental applications in the context of specific applications, composites, and their preparation processes. In addition, the research on the adhesive properties of PEEK over the past few years is highlighted. Thus, this review aims to build a conceptual and practical toolkit for the study of the mechanical and adhesive properties of PEEK materials. More importantly, it provides a rationale and a general new basis for the application of PEEK in the dental field. 10.3390/polym15020386
Comparison of Plaque Accumulation Between Titanium and PEEK Healing Abutments. Journal of functional biomaterials Titanium (Ti) is considered the gold standard material for provisional implant restorations. Polyetheretherketone (PEEK), a polymeric thermoplastic material, has been progressively used in prosthetic, restorative, and implant dentistry. Recently, PEEK has been used in implant dentistry as a provisional implant restoration. Plaque accumulation and biofilm formation become the major concerns when infection and inflammation occur in the peri-implant tissue. Few reports were studied regarding the biofilm formation on the PEEK surface. This study aimed to compare plaque accumulation between the PEEK and Ti healing abutments. In an in vitro setting, the Ti healing abutment and PEEK healing abutment were subjected to biofilm formation; the result was collected after 24 h, 48 h, 72 h, and 7 days. Biofilms were studied following staining with crystal violet. The data were analyzed by Two-Way ANOVA. It was found that between Ti healing abutment and PEEK healing abutment materials, the biofilm formation on the PEEK surface is slightly higher than Ti, but no statistical difference ( > 0.05) was found. The results suggested that plaque accumulation between the Ti healing abutment and the PEEK healing abutment was not different. We concluded that the plaque accumulation on the surface PEEK healing abutment was similar to the conventional Ti healing abutment materials. Hence, both the PEEK and Ti healing abutments can be used as a healing abutment biomaterial according to the requirements of the prostheses in implant dentistry. 10.3390/jfb15110334
Carbon fiber-reinforced PEEK in implant dentistry: A scoping review on the finite element method. Souza Júlio C M,Pinho Sofia S,Braz Maria Pranto,Silva Filipe S,Henriques Bruno Computer methods in biomechanics and biomedical engineering The aim of the present study was to perform an integrative systematic review on the stress distribution assessed by finite element analysis on dental implants or abutments composed of carbon fiber-reinforced PEEK composites. An electronic search was performed on PUBMED and ScienceDirect using a combination of the following search terms: PEEK, Polyetheretherketone, FEA, FEM, Finite element, Stress, Dental implant and Dental abutment. The findings reported mechanical properties and the stress distribution through implant and abutment composed of PEEK and its fiber-reinforced composites. Unfilled PEEK revealed low values of elastic modulus and strength that negatively affected the stress distribution through the abutment and implant towards to the bone tisues. The incorporation of 30% carbon fibers increased the elastic modulus and strength of the PEEK-matrix composites although some studies reported no statistic differences in stress magnitude when compared to unfilled PEEK. However, an increase in short carbon fibers up to 60% revealed an enhancement on the stress distribution through abutment and implants towards to the bone tissues. PEEK veneering onto titanium core structures can also be a strategy to control the stress distribution at the implant-to-bone interface. The stiffness and strength of PEEK-matrix composites can be increased by the improvement of the carbon fibers' network. Thus, the content, shape, dimensions, and chemical composition of fibers are key factors to improve the stress distribution through abutment and implants composed of PEEK-matrix composites. 10.1080/10255842.2021.1888939
PEEK with Reinforced Materials and Modifications for Dental Implant Applications. Dentistry journal Polyetheretherketone (PEEK) is a semi-crystalline linear polycyclic thermoplastic that has been proposed as a substitute for metals in biomaterials. PEEK can also be applied to dental implant materials as a superstructure, implant abutment, or implant body. This article summarizes the current research on PEEK applications in dental implants, especially for the improvement of PEEK surface and body modifications. Although various benchmark reports on the reinforcement and surface modifications of PEEK are available, few clinical trials using PEEK for dental implant bodies have been published. Controlled clinical trials, especially for the use of PEEK in implant abutment and implant bodies, are necessary. 10.3390/dj5040035
Polyetheretherketone Material in Dentistry. Cureus A polyaromatic nearly-crystalline thermoplastic polymer, polyetheretherketone (PEEK), has become a useful biomaterial and its use has increased in dentistry because of its properties. PEEK is scientifically approved and is among the safest material used to restore lost orofacial tissues at present. PEEK has a property of high biocompatibility, therefore there is increased utilization of PEEK in orthopaedic and trauma cases. PEEK has several excellent properties due to which it has been used in several fields of dentistry such as orthodontic wires, implants, removable dentures, fixed partial dentures, finger prostheses, temporary abutments, implant-supported provisional crowns, healing caps, maxillofacial prostheses, etc. Due to its modification, PEEK material is used more frequently in clinical dentistry. PEEK can be used as a material that is not traditional in the realm of dental care. Modification of PEEK has led to an increase in its use in the field of dentistry. 10.7759/cureus.46485
Polyetheretherketone (PEEK) as a Biomaterial: An Overview. Cureus Polyetheretherketone (PEEK) is a very powerful biomaterial that is increasingly used in dentistry. It has superior properties, which make it desirable in implantology. The applications of PEEK include finger prosthesis, RPD and FPD framework, and dental implants. Changes in the production of polyketone-based materials have been made to ensure consistent production of polymers for medical applications. PEEK is a high-performance semicrystalline material that has physical properties such as high resilience and strength. It is a tooth-colored material, making it desirable for its aesthetic appearance. Traditional manufacturing methods like injection molding, extrusion, and compression molding are used for PEEK. Despite the high price of the polymer, the additional value that PEEK materials bring by offering the possibility of manufacturing parts include lightweight, strength or toughness and able to survive longer in harsh environments. PEEK has trauma or shock cancelling abilities, fracture resisting abilities, stress distributing ability, osseointegrating abilities, With such great qualities PEEK has an increased demand in the market, and this biomaterial never failes to surprise with its amazing success rate. Even in dentistry PEEK has a wide range of applications which includes, as a dental implants biomaterial, prosthetic material, abutment material, post and core material, crowns, removable partial denture framework. With such a huge range of applications PEEK is said to have been providing an all in one package for dentistry. PEEK biomaterial shows great compatibility with bioactive materials which has proven to be of great help to mankind as not only it is involved in life sciences but also in automotives and aerodynamics as well. The main motto of this review is to know the qualities and the properties of PEEK as a capable implant prosthesis for its application focusing on dental implants. This review tells us about the challenges faced when using this material and benefits and advantages of this biomaterial. 10.7759/cureus.44307
In Vivo Biofilm Formation on Novel PEEK, Titanium, and Zirconia Implant Abutment Materials. International journal of molecular sciences The formation of biofilms on the surface of dental implants and abutment materials may lead to peri-implantitis and subsequent implant failure. Recently, innovative materials such as polyether-ether-ketone (PEEK) and its modifications have been used as abutment materials. However, there is limited knowledge on microbial adhesion to PEEK materials. The aim of this in vivo study was to investigate biofilm formation on the surface of conventional (titanium and zirconia) and PEEK implant abutment materials. Split specimens of titanium, zirconia, PEEK, and modified PEEK (PEEK-BioHPP) were manufactured, mounted in individual removable acrylic upper jaw splints, and worn by 20 healthy volunteers for 24 h. The surface roughness was determined using widefield confocal microscopy. Biofilm accumulation was investigated by fluorescence microscopy and quantified by imaging software. The surface roughness of the investigated materials was <0.2 µm and showed no significant differences between the materials. Zirconia showed the lowest biofilm formation, followed by titanium, PEEK, and PEEK-BioHPP. Differences were significant (p < 0.001) between the investigated materials, except for the polyether-ether-ketones. Generally, biofilm formation was significantly higher (p < 0.05) in the posterior region of the oral cavity than in the anterior region. The results of the present study show a material-dependent susceptibility to biofilm formation. The risk of developing peri-implantitis may be reduced by a specific choice of abutment material. 10.3390/ijms24021779
Dental implant and abutment in PEEK: stress assessment in single crown retainers on anterior region. Clinical oral investigations OBJECTIVE:Stress distribution assessment by finite elements analysis in poly(etheretherketone) (PEEK) implant and abutment as retainers of single crowns in the anterior region. MATERIALS AND METHODS:Five 3D models were created, varying implant/abutment manufacturing materials: titanium (Ti), zirconia (Zr), pure PEEK (PEEKp), carbon fiber-reinforced PEEK (PEEKc), glass fiber-reinforced PEEK (PEEKg). A 50 N load was applied 30 off-axis at the incisal edge of the upper central incisor. The Von Mises stress (σvM) was evaluated on abutment, implant/screw, and minimum principal stress (σmin) and maximum shear stress (τmax) for cortical and cancellous bone. RESULTS:The abutment σvM lowest stress was observed in PEEKp group, being 70% lower than Ti and 74% than Zr. On the implant, PEEKp reduced 68% compared to Ti and a 71% to Zr. In the abutment screws, an increase of at least 33% was found in PEEKc compared to Ti, and of at least 81% to Zr. For cortical bone, the highest τmax values were in the PEEKp group, and a slight increase in stress was observed compared to all PEEK groups with Ti and Zr. For σmin, the highest stress was found in the PEEKc. Stress increased at least 7% in cancellous bone for all PEEK groups. CONCLUSION:Abutments and implants made by PEEKc concentrate less σvM stress, transmitting greater stress to the cortical and medullary bone. CLINICAL RELEVANCE:The best stress distribution in PEEKc components may contribute to decreased stress shielding; in vitro and in vivo research is recommended to investigate this. 10.1007/s00784-024-05722-2
The use of PEEK in digital prosthodontics: A narrative review. Papathanasiou Ioannis,Kamposiora Phophi,Papavasiliou George,Ferrari Marco BMC oral health BACKGROUND:Advanced computer-aided design and computer-aided manufacturing (CAD-CAM) technology led to the introduction of an increasing number of machinable materials suitable for dental prostheses. One of these materials is polyetheretherketone (PEEK), a high performance polymer recently used in dentistry with favorable physical, mechanical and chemical properties. The purpose of this study was to review the current published literature on the use of PEEK for the fabrication of dental prostheses with CAD-CAM techniques. METHODS:Electronic database searches were performed using the terms "PEEK", "CAD-CAM", "dental", "dentistry" to identify studies related to the use of PEEK for the fabrication of CAD-CAM prostheses. The search period spanned from January 1990 through February 2020. Both in vivo and in vitro studies in English were eligible. Review articles and the references of the included publications were searched to identify relevant articles. RESULTS:A great number of in vitro studies are available in the current literature pointing out the noticeable properties of PEEK. The use of PEEK has been recommended for a wide range of CAD-CAM fabricated fixed and removable dental prostheses. PEEK was additionally recommended for occlusal splints, intra-radicular posts, implant abutments, customized healing abutments and provisional restorations. However, only a few clinical studies were identified. CONCLUSIONS:PEEK could be considered as a viable alternative for CAD-CAM fixed and removable dental prostheses to well-established dental materials. Due to the scarcity of clinical data, clinical trials are needed to assess the long-term performance of PEEK prostheses. 10.1186/s12903-020-01202-7
Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. Najeeb Shariq,Zafar Muhammad S,Khurshid Zohaib,Siddiqui Fahad Journal of prosthodontic research PURPOSE:Polyetheretherketone (PEEK) is a polymer that has many potential uses in dentistry. The aim of this review was to summarize the outcome of research conducted on the material for dental applications. In addition, future prospects of PEEK in the field of clinical dentistry have been highlighted. STUDY SELECTION:An electronic search was carried out via the PubMed (Medline) database using keywords 'polyetheretherketone', 'dental' and 'dentistry' in combination. Original research papers published in English language in last fifteen year were considered. The studies relevant to our review were critically analyzed and summarized. RESULTS:PEEK has been explored for a number of applications for clinical dentistry. For example, PEEK dental implants have exhibited lesser stress shielding compared to titanium dental implants due to closer match of mechanical properties of PEEK and bone. PEEK is a promising material for a number of removable and fixed prosthesis. Furthermore, recent studies have focused improving the bioactivity of PEEK implants at the nanoscale. CONCLUSION:Considering mechanical and physical properties similar to bone, PEEK can be used in many areas of dentistry. Improving the bioactivity of PEEK dental implants without compromising their mechanical properties is a major challenge. Further modifications and improving the material properties may increase its applications in clinical dentistry. 10.1016/j.jpor.2015.10.001
PEEK in Fixed Dental Prostheses: Application and Adhesion Improvement. Polymers Polyetheretherketone (PEEK) has been widely applied in fixed dental prostheses, comprising crowns, fixed partial dentures, and post-and-core. PEEK's excellent mechanical properties facilitate better stress distribution than conventional materials, protecting the abutment teeth. However, the stiffness of PEEK is not sufficient, which can be improved via fiber reinforcement. PEEK is biocompatible. It is nonmutagenic, noncytotoxic, and nonallergenic. However, the chemical stability of PEEK is a double-edged sword. On the one hand, PEEK is nondegradable and intraoral corrosion is minimized. On the other hand, the inert surface makes adhesive bonding difficult. Numerous strategies for improving the adhesive properties of PEEK have been explored, including acid etching, plasma treatment, airborne particle abrasion, laser treatment, and adhesive systems. 10.3390/polym14122323