Comparison of Multiple Strategies for Precision Transgene Knock-In in Genome via Microhomology-Mediated End Joining.
International journal of molecular sciences
Precision exogenous gene knock-in is an attractive field for transgenic (chicken) generation. In this article, we constructed multiple Precise Integration into Target Chromosome (PITCh) plasmid systems mediated by microhomology-mediated end-joining (MMEJ) for large-fragment integration in DF-1 cells and further assess the possibility of (glyceraldehyde-3-phosphate dehydrogenase) as a genomic safe harbor for chickens. We designed three targeted sgRNAs for the all-in-one plasmid at the 3'UTR of near the stop codon. The donor-plasmid-carrying microhomology arms correspond to sgRNA and EGFP fragments in the forward and reverse directions. MMEJ-mediated EGFP insertion can be efficiently expressed in DF-1 cells. Moreover, the differences between the forward and reverse fragments indicated that promoter interference does affect the transfection efficiency of plasmids and cell proliferation. The comparison of the 20 bp and 40 bp microhomology arms declared that the short one has higher knock-in efficiency. Even though all three different transgene insertion sites in could be used to integrate the foreign gene, we noticed that the G2-20R-EGFP cell reduced the expression of , and the G3-20R-EGFP cell exhibited significant growth retardation. Taken together, G1, located at the 3'UTR of on the outer side of the last base of the terminator, can be a candidate genomic safe harbor (GSH) loci for the chicken genome. In addition, deleted-in-azoospermia-like () and actin beta () site-specific gene knock-in indicated that MMEJ has broad applicability and high-precision knock-in efficiency for genetically engineered chickens.
10.3390/ijms242115731
Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9.
Zhang Luqing,Jia Ruirui,Palange Norberto J,Satheka Achim Cchitvsanzwhoh,Togo Jacques,An Yao,Humphrey Mabwi,Ban Luying,Ji Yan,Jin Honghong,Feng Xuechao,Zheng Yaowu
PloS one
ZFN, TALENs and CRISPR/Cas9 system have been used to generate point mutations and large fragment deletions and insertions in genomic modifications. CRISPR/Cas9 system is the most flexible and fast developing technology that has been extensively used to make mutations in all kinds of organisms. However, the most mutations reported up to date are small insertions and deletions. In this report, CRISPR/Cas9 system was used to make large DNA fragment deletions and insertions, including entire Dip2a gene deletion, about 65kb in size, and β-galactosidase (lacZ) reporter gene insertion of larger than 5kb in mouse. About 11.8% (11/93) are positive for 65kb deletion from transfected and diluted ES clones. High targeting efficiencies in ES cells were also achieved with G418 selection, 46.2% (12/26) and 73.1% (19/26) for left and right arms respectively. Targeted large fragment deletion efficiency is about 21.4% of live pups or 6.0% of injected embryos. Targeted insertion of lacZ reporter with NEO cassette showed 27.1% (13/48) of targeting rate by ES cell transfection and 11.1% (2/18) by direct zygote injection. The procedures have bypassed in vitro transcription by directly co-injection of zygotes or co-transfection of embryonic stem cells with circular plasmid DNA. The methods are technically easy, time saving, and cost effective in generating mouse models and will certainly facilitate gene function studies.
10.1371/journal.pone.0120396
CRISPR/Cas-Based Gene Editing Tools for Large DNA Fragment Integration.
ACS synthetic biology
In recent years, gene editing technologies have rapidly evolved to enable precise and efficient genomic modification. These strategies serve as a crucial instrument in advancing our comprehension of genetics and treating genetic disorders. Of particular interest is the manipulation of large DNA fragments, notably the insertion of large fragments, which has emerged as a focal point of research in recent years. Nevertheless, the techniques employed to integrate larger gene fragments are frequently confronted with inefficiencies, off-target effects, and elevated costs. It is therefore imperative to develop efficient tools capable of precisely inserting kilobase-sized DNA fragments into mammalian genomes to support genetic engineering, gene therapy, and synthetic biology applications. This review provides a comprehensive overview of methods developed in the past five years for integrating large DNA fragments with a particular focus on burgeoning CRISPR-related technologies. We discuss the opportunities associated with homology-directed repair (HDR) and emerging CRISPR-transposase and CRISPR-recombinase strategies, highlighting their potential to revolutionize gene therapies for complex diseases. Additionally, we explore the challenges confronting these methodologies and outline potential future directions for their improvement with the overarching goal of facilitating the utilization and advancement of tools for large fragment gene editing.
10.1021/acssynbio.4c00632
Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.
Nucleic acids research
CRISPR/Cas9-induced site-specific DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or non-homologous end joining (NHEJ) pathways. Extensive efforts have been made to knock-in exogenous DNA to a selected genomic locus in human cells; which, however, has focused on HDR-based strategies and was proven inefficient. Here, we report that NHEJ pathway mediates efficient rejoining of genome and plasmids following CRISPR/Cas9-induced DNA DSBs, and promotes high-efficiency DNA integration in various human cell types. With this homology-independent knock-in strategy, integration of a 4.6 kb promoterless ires-eGFP fragment into the GAPDH locus yielded up to 20% GFP+ cells in somatic LO2 cells, and 1.70% GFP+ cells in human embryonic stem cells (ESCs). Quantitative comparison further demonstrated that the NHEJ-based knock-in is more efficient than HDR-mediated gene targeting in all human cell types examined. These data support that CRISPR/Cas9-induced NHEJ provides a valuable new path for efficient genome editing in human ESCs and somatic cells.
10.1093/nar/gkw064