logo logo
In Vivo MRI Tracking of Tumor Vaccination and Antigen Presentation by Dendritic Cells. Molecular imaging and biology Cancer vaccination using tumor antigen-primed dendritic cells (DCs) was introduced in the clinic some 25 years ago, but the overall outcome has not lived up to initial expectations. In addition to the complexity of the immune response, there are many factors that determine the efficacy of DC therapy. These include accurate administration of DCs in the target tissue site without unwanted cell dispersion/backflow, sufficient numbers of tumor antigen-primed DCs homing to lymph nodes (LNs), and proper timing of immunoadjuvant administration. To address these uncertainties, proton (H) and fluorine (F) magnetic resonance imaging (MRI) tracking of ex vivo pre-labeled DCs can now be used to non-invasively determine the accuracy of therapeutic DC injection, initial DC dispersion, systemic DC distribution, and DC migration to and within LNs. Magnetovaccination is an alternative approach that tracks in vivo labeled DCs that simultaneously capture tumor antigen and MR contrast agent in situ, enabling an accurate quantification of antigen presentation to T cells in LNs. The ultimate clinical premise of MRI DC tracking would be to use changes in LN MRI signal as an early imaging biomarker to predict the efficacy of tumor vaccination and anti-tumor response long before treatment outcome becomes apparent, which may aid clinicians with interim treatment management. 10.1007/s11307-021-01647-4
mRNA-based dendritic cell vaccines. Benteyn Daphné,Heirman Carlo,Bonehill Aude,Thielemans Kris,Breckpot Karine Expert review of vaccines Cancer immunotherapy has been proposed as a powerful treatment modality. Active immunotherapy aspires to stimulate the patient's immune system, particularly T cells. These cells can recognize and kill cancer cells and can form an immunological memory. Dendritic cells (DCs) are the professional antigen-presenting cells of our immune system. They take up and process antigens to present them to T cells. Consequently, DCs have been investigated as a means to stimulate cancer-specific T-cell responses. An efficient strategy to program DCs is the use of mRNA, a well-defined and safe molecule that can be easily generated at high purity. Importantly, vaccines consisting of mRNA-modified DCs showed promising results in clinical trials. Therefore, we will introduce cancer immunotherapy and DCs and give a detailed overview on the application of mRNA to generate cancer-fighting DC vaccines. 10.1586/14760584.2014.957684
Gemcitabine-mediated depletion of immunosuppressive dendritic cells enhances the efficacy of therapeutic vaccination. Frontiers in immunology Vaccination using optimized strategies may increase response rates to immune checkpoint inhibitors (ICI) in some tumors. To enhance vaccine potency and improve thus responses to ICI, we analyzed the gene expression profile of an immunosuppressive dendritic cell (DC) population induced during vaccination, with the goal of identifying druggable inhibitory mechanisms. RNAseq studies revealed targetable genes, but their inhibition did not result in improved vaccines. However, we proved that immunosuppressive DC had a monocytic origin. Thus, monocyte depletion by gemcitabine administration reduced the generation of these DC and increased vaccine-induced immunity, which rejected about 20% of LLC-OVA and B16-OVA tumors, which are non-responders to anti-PD-1. This improved efficacy was associated with higher tumor T-cell infiltration and overexpression of PD-1/PD-L1. Therefore, the combination of vaccine + gemcitabine with anti-PD-1 was superior to anti-PD-1 monotherapy in both models. B16-OVA tumors benefited from a synergistic effect, reaching 75% of tumor rejection, but higher levels of exhausted T-cells in LLC-OVA tumors co-expressing PD-1, LAG3 and TIM3 precluded similar levels of efficacy. Our results indicate that gemcitabine is a suitable combination therapy with vaccines aimed at enhancing PD-1 therapies by targeting vaccine-induced immunosuppressive DC. 10.3389/fimmu.2022.991311
Dendritic cell-targeted vaccines--hope or hype? Kastenmüller Wolfgang,Kastenmüller Kathrin,Kurts Christian,Seder Robert A Nature reviews. Immunology The development of an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer is a challenge. One strategy to enhance the effectiveness of vaccination is by targeting dendritic cells (DCs). In this Opinion article, we discuss existing DC-targeting approaches that induce adaptive immunity. We highlight the crucial issues that need to be addressed to move the field forward and discuss whether targeting DCs could be better than current vaccine approaches. 10.1038/nri3727
Next-generation antigen-presenting cell immune therapeutics for gliomas. The Journal of clinical investigation Antigen presentation machinery and professional antigen-presenting cells (APCs) are fundamental for an efficacious immune response against cancers, especially in the context of T cell-centric immunotherapy. Dendritic cells (DCs), the gold standard APCs, play a crucial role in initiating and maintaining a productive antigen-specific adaptive immunity. In recent decades, ex vivo-differentiated DCs from circulating CD14+ monocytes have become the reference for APC-based immunotherapy. DCs loaded with tumor-associated antigens, synthetic peptides, or RNA activate T cells with antitumor properties. This strategy has paved the way for the development of alternative antigen-presenting vaccination strategies, such as monocytes, B cells, and artificial APCs, that have shown effective therapeutic outcomes in preclinical cancer models. The search for alternative APC platforms was initiated by the overall limited clinical impact of DC vaccines, especially in indications such as gliomas, a primary brain tumor known for resistance to any immune intervention. In this Review, we navigate the APC immune therapeutics' past, present, and future in the context of primary brain tumors. 10.1172/JCI163449
In situ vaccination via tissue-targeted cDC1 expansion enhances the immunogenicity of chemoradiation and immunotherapy. The Journal of clinical investigation Even with the prolific clinical use of next-generation cancer therapeutics, many tumors remain unresponsive or become refractory to therapy, creating a medical need. In cancer, DCs are indispensable for T cell activation, so there is a restriction on cytotoxic T cell immunity if DCs are not present in sufficient numbers in the tumor and draining lymph nodes to take up and present relevant cancer antigens. To address this bottleneck, we developed a therapeutic based on albumin fused with FMS-related tyrosine kinase 3 ligand (Alb-Flt3L) that demonstrated superior pharmacokinetic properties compared with Flt3L, including significantly longer half-life, accumulation in tumors and lymph nodes, and cross-presenting-DC expansion following a single injection. We demonstrated that Alb-Flt3L, in combination with standard-of-care chemotherapy and radiation therapy, serves as an in situ vaccination strategy capable of engendering polyclonal tumor neoantigen-specific immunity spontaneously. In addition, Alb-Flt3L-mediated tumor control synergized with immune checkpoint blockade delivered as anti-PD-L1. The mechanism of action of Alb-Flt3L treatment revealed a dependency on Batf3, type I IFNs, and plasmacytoid DCs. Finally, the ability of Alb-Flt3L to expand human DCs was explored in humanized mice. We observed significant expansion of human cross-presenting-DC subsets, supporting the notion that Alb-Flt3L could be used clinically to modulate human DC populations in future cancer therapeutic regimens. 10.1172/JCI171621