The Y chromosome and its impact on health and disease.
Human molecular genetics
The Y chromosome is the most gene-deficient chromosome in the human genome (though not the smallest chromosome) and has largely been sequestered away from large-scale studies of the effects of genetics on human health. Here I review the literature, focusing on the last 2 years, for recent evidence of the role of the Y chromosome in protecting from or contributing to disease. Although many studies have focused on Y chromosome gene copy number and variants in fertility, the role of the Y chromosome in human health is now known to extend too many other conditions including the development of multiple cancers and Alzheimer's disease. I further include the discussion of current technology and methods for analyzing Y chromosome variation. The true role of the Y chromosome and associated genetic variants in human disease will only become clear when the Y chromosome is integrated into larger studies of human genetic variation, rather than being analyzed in isolation.
10.1093/hmg/ddab215
The Role of T Cells in Ovarian Physiology and Infertility.
Frontiers in cell and developmental biology
Infertility affects one in six couples worldwide, with more than 48 million couples affected internationally. The prevalence of infertility is increasing which is thought to be attributed to delayed child-bearing due to socioeconomic factors. Since women are more prone to autoimmune diseases, we sought to describe the correlation between ovarian-mediated infertility and autoimmunity, and more specifically, the role of T cells in infertility. T cells prevent autoimmune diseases and allow maternal immune tolerance of the semi-allogeneic fetus during pregnancy. However, the role of T cells in ovarian physiology has yet to be fully understood.
10.3389/fcell.2022.713650
The X chromosome and male infertility.
Vockel Matthias,Riera-Escamilla Antoni,Tüttelmann Frank,Krausz Csilla
Human genetics
The X chromosome is a key player in germ cell development, as has been highlighted for males in previous studies revealing that the mammalian X chromosome is enriched in genes expressed in early spermatogenesis. In this review, we focus on the X chromosome's unique biology as associated with human male infertility. Male infertility is most commonly caused by spermatogenic defects to which X chromosome dosage is closely linked; for example, any supernumerary X chromosome as in Klinefelter syndrome will lead to male infertility. Furthermore, because males normally only have a single X chromosome and because X-linked genetic anomalies are generally only present in a single copy in males, any loss-of-function mutations in single-copy X-chromosomal genes cannot be compensated by a normal allele. These features make X-linked genes particularly attractive for studying male spermatogenic failure. However, to date, only very few genetic causes have been identified as being definitively responsible for male infertility in humans. Although genetic studies of germ cell-enriched X-chromosomal genes in mice suggest a role of certain human orthologs in infertile men, these genes in mice and humans have striking evolutionary differences. Furthermore, the complexity and highly repetitive structure of the X chromosome hinder the mutational analysis of X-linked genes in humans. Therefore, we conclude that additional methodological approaches are urgently warranted to advance our understanding of the genetics of X-linked male infertility.
10.1007/s00439-019-02101-w
Turner syndrome revisited: review of new data supports the hypothesis that all viable 45,X cases are cryptic mosaics with a rescue cell line, implying an origin by mitotic loss.
Hook Ernest B,Warburton Dorothy
Human genetics
We review the data pertinent to the hypothesis we proposed three decades ago, that all embryos that survive gestation as women with Turner syndrome and have an ostensibly non-mosaic 45,X karyotype, actually are cryptic mosaics for a "rescue line" that includes a viable karyotype. Reanalysis of the prevalence and frequency of 45,X in available data on spontaneous abortuses, and livebirths, confirms prior estimates that 1 % to 1.5 % of all recognizable pregnancies start as an apparent non-mosaic 45,X but about 99 % do not survive gestation. From the rates of 45,X in early embryos, which are notably higher than the inferred rate of gametes hypohaploid for a sex chromosome, as well as the negative maternal age association with 45,X of maternal origin we deduce, in agreement with but on independent grounds from Hall et al. (2006), that a very large proportion of 45,X embryos acquired their 45,X line after fertilization. Results of a search for mosaic cell lines in patients with "Turner syndrome" in several reports indicate that not only does the detection rate of a mosaic line depend upon the number and sensitivity of the markers used, and the number of different tissues examined, but also upon the severity of the phenotype of those cases studied, and the number of cells karyotyped initially. Such factors may explain variation in the extent of detected "cryptic" mosaicism in 45,X individuals (currently at least 50 %). We note a report by Urbach and Benvenitsy (2009) of a gene necessary for placental function, PSF2RA, which lies in the pseudoautosomal-one region of the X and Y chromosomes. Deletion of such a gene could account for the high embryonic lethality in 45,X conceptions, and a rescue line in the placenta could account for embryonic and fetal survival of those cases in which a cryptic mosaic line cannot be found in the usual studies of blood and other tissues from affected individuals. Our primary conclusions are 1) all 45,X individuals with Turner syndrome are cryptic mosaics, 2) absence of the X chromosome in 45,X embryos is caused primarily by mitotic factors, and 3) the placenta is a strong candidate for the location of the rescue line in apparently non-mosaic 45,X individuals.
10.1007/s00439-014-1420-x
Detection and characterization of male sex chromosome abnormalities in the UK Biobank study.
Genetics in medicine : official journal of the American College of Medical Genetics
PURPOSE:The study aimed to systematically ascertain male sex chromosome abnormalities, 47,XXY (Klinefelter syndrome [KS]) and 47,XYY, and characterize their risks of adverse health outcomes. METHODS:We analyzed genotyping array or exome sequence data in 207,067 men of European ancestry aged 40 to 70 years from the UK Biobank and related these to extensive routine health record data. RESULTS:Only 49 of 213 (23%) of men whom we identified with KS and only 1 of 143 (0.7%) with 47,XYY had a diagnosis of abnormal karyotype on their medical records or self-report. We observed expected associations for KS with reproductive dysfunction (late puberty: risk ratio [RR] = 2.7; childlessness: RR = 4.2; testosterone concentration: RR = -3.8 nmol/L, all P < 2 × 10), whereas XYY men appeared to have normal reproductive function. Despite this difference, we identified several higher disease risks shared across both KS and 47,XYY, including type 2 diabetes (RR = 3.0 and 2.6, respectively), venous thrombosis (RR = 6.4 and 7.4, respectively), pulmonary embolism (RR = 3.3 and 3.7, respectively), and chronic obstructive pulmonary disease (RR = 4.4 and 4.6, respectively) (all P < 7 × 10). CONCLUSION:KS and 47,XYY were mostly unrecognized but conferred substantially higher risks for metabolic, vascular, and respiratory diseases, which were only partially explained by higher levels of body mass index, deprivation, and smoking.
10.1016/j.gim.2022.05.011
The genetics of microdeletion and microduplication syndromes: an update.
Watson Corey T,Marques-Bonet Tomas,Sharp Andrew J,Mefford Heather C
Annual review of genomics and human genetics
Chromosomal abnormalities, including microdeletions and microduplications, have long been associated with abnormal developmental outcomes. Early discoveries relied on a common clinical presentation and the ability to detect chromosomal abnormalities by standard karyotype analysis or specific assays such as fluorescence in situ hybridization. Over the past decade, the development of novel genomic technologies has allowed more comprehensive, unbiased discovery of microdeletions and microduplications throughout the human genome. The ability to quickly interrogate large cohorts using chromosome microarrays and, more recently, next-generation sequencing has led to the rapid discovery of novel microdeletions and microduplications associated with disease, including very rare but clinically significant rearrangements. In addition, the observation that some microdeletions are associated with risk for several neurodevelopmental disorders contributes to our understanding of shared genetic susceptibility for such disorders. Here, we review current knowledge of microdeletion/duplication syndromes, with a particular focus on recurrent rearrangement syndromes.
10.1146/annurev-genom-091212-153408
Variants in ZFX are associated with an X-linked neurodevelopmental disorder with recurrent facial gestalt.
American journal of human genetics
Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.
10.1016/j.ajhg.2024.01.007
Emerging X-linked genes associated with neurodevelopmental disorders in females.
Current opinion in neurobiology
A significant source of risk for neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorder (ASD), lies in genes located on the X chromosome. Males can be particularly vulnerable to X-linked variation because of hemizygosity, and male-specific segregation in pedigrees has guided earlier gene discovery for X-linked recessive conditions. More recently, X-linked disorders disproportionally affecting females, with complex inheritance patterns and/or presenting with sex differences, have surfaced. Here, we discuss the genetics and neurobiology of X-linked genes that are paradigmatic to understand NDDs in females. Integrating genetic, clinical, and functional data will be key to understand how X-linked variation contributes to the risk architecture of NDDs.
10.1016/j.conb.2024.102902
16p11.2 deletion syndrome.
Current opinion in genetics & development
The 16p11.2 BP4 and BP5 region, is a recurrent ∼600kb copy number variant (CNV), and deletions are one of the most frequent etiologies of neurodevelopmental disorders and autism spectrum disorder with an incidence of approximately 1/2000. Deletion carriers have delays in early neurodevelopment that most specifically impair speech, phonology and language in 70%. Intelligence quotient is shifted 1.8 standard deviations lower than family controls without the deletion. Other common neurobehavioral conditions include motor coordination difficulties (60%) and autism (20-25%). Unprovoked seizures are common (24%) and readily treated and resolve with age in many. Obesity evolves throughout childhood and by adulthood 75% are obese. Congenital anomalies are more common than the general population. The deletion is associated with an increase in brain volumes across all areas of the brain, changes in the white matter microstructural properties, and early electrophysiological cortical responses from auditory cortex. Studies of genetically defined conditions, particularly CNVs that are not associated with profound disabilities, provide homogeneity to study genetic impact on brain development, structure, and function to better understand complex neurobehavioral phenotypes such as autism.
10.1016/j.gde.2021.01.011
Return of genetic research results in 21,532 individuals with autism.
Genetics in medicine : official journal of the American College of Medical Genetics
PURPOSE:The aim of this study is to identify likely pathogenic (LP) and pathogenic (P) genetic results for autism that can be returned to participants in SPARK (SPARKforAutism.org): a large recontactable cohort of people with autism in the United States. We also describe the process to return these clinically confirmed genetic findings. METHODS:We present results from microarray genotyping and exome sequencing of 21,532 individuals with autism and 17,785 of their parents. We returned LP and P (American College of Medical Genetics criteria) copy-number variants, chromosomal aneuploidies, and variants in genes with strong evidence of association with autism and intellectual disability. RESULTS:We identified 1903 returnable LP/P variants in 1861 individuals with autism (8.6%). 89.5% of these variants were not known to participants. The diagnostic genetic result was returned to 589 participants (53% of those contacted). Features associated with a higher probability of having a returnable result include cognitive and medically complex features, being female, being White (versus non-White) and being diagnosed more than 20 years ago. We also find results among autistics across the spectrum, as well as in transmitting parents with neuropsychiatric features but no autism diagnosis. CONCLUSION:SPARK offers an opportunity to assess returnable results among autistic people who have not been ascertained clinically. SPARK also provides practical experience returning genetic results for a behavioral condition at a large scale.
10.1016/j.gim.2024.101202
Cytogenetic abnormalities in essential thrombocythemia: Clinical and molecular correlates and prognostic relevance in 809 informative cases.
Blood cancer journal
Cytogenetic studies among 809 consecutive patients with essential thrombocythemia (ET; median age 59 years; 65% females) revealed normal karyotype in 754 (93%), loss of chromosome Y only (-Y) in 16 (2%), and abnormalities other than -Y in 39 (4.8%), the most frequent being sole 20q- (n = 8). At presentation, abnormal karyotype, excluding -Y, was associated with older age (p = 0.04), higher leukocyte count (p = 0.03) and arterial thrombosis history (p = 0.02); no associations were apparent for JAK2/CALR/MPL mutations whereas ASXL1 mutations clustered with normal karyotype/-Y and TP53 with abnormal karyotype. Survival was significantly shorter in patients with abnormal karyotype or -Y, compared to those with normal karyotype (median 12, 10, and 21 years, respectively; p < 0.0001). During multivariable analysis that included IPSET (international prognostic score for ET) variables, abnormal karyotype (p < 0.01, HR 2.0), age >60 years (p < 0.01, HR 4.5), leukocytosis >11 × 10/L (p < 0.01, HR 1.5), and male gender (p < 0.01, HR 1.4) were independently associated with inferior survival; abnormal karyotype and age >60 years remained significant, along with SF3B1/SRSF2/U2AF1/TP53 mutations (p = 0.04; HR 2.9), when the latter was included in the multivariable model. The current study suggests prognostic relevance for karyotype in ET.
10.1038/s41408-022-00639-z
Prevalence, Morbidity, and Mortality of Men With Sex Chromosome Aneuploidy in the Million Veteran Program Cohort.
JAMA network open
Importance:The reported phenotypes of men with 47,XXY and 47,XYY syndromes include tall stature, multisystem comorbidities, and poor health-related quality of life (HRQOL). However, knowledge about these sex chromosome aneuploidy (SCA) conditions has been derived from studies in the less than 15% of patients who are clinically diagnosed and also lack diversity in age and genetic ancestry. Objectives:To determine the prevalence of clinically diagnosed and undiagnosed X or Y chromosome aneuploidy among men enrolled in the Million Veteran Program (MVP); to describe military service metrics of men with SCAs; and to compare morbidity and mortality outcomes between men with SCA with and without a clinical diagnosis vs matched controls. Design, Setting, and Participants:This cross-sectional study used a case-control recruitment design to select biological males enrolled in the MVP biobank in the US Veterans Administration health care system from 2011 to 2022. Cases were participants with 47,XXY syndrome or 47,XYY syndrome, matched 1:5 with controls based on sex, age, and genetic ancestry. Data were analyzed from January 2022 to December 2023. Exposure:Genomic identification of an additional X or Y chromosome. Main Outcomes and Measures:Outcomes of interest included prevalence of men with SCAs from genomic analysis; clinical SCA diagnosis; Charlson Comorbidity Index; rates of outpatient, inpatient, and emergency encounters per year; self-reported health outcomes; and standardized mortality ratio. Results:Of 595 612 genotyped males in the MVP, 862 had an additional X chromosome (47,XXY) and 747 had an extra Y chromosome (47,XYY), with the highest prevalence among men with East Asian (47,XXY: 10 of 7313 participants; 47,XYY: 14 of 7313 participants) and European (47,XXY: 725 of 427 143 participants; 47,XYY: 625 of 427 143 participants) ancestry. Mean (SD) age at assessment was 61 (12) years, at which point 636 veterans (74.X%) with 47,XXY and 745 veterans (99%) with 47,XYY remained undiagnosed. Individuals with 47,XXY and 47,XYY had similar military service history, all-cause standardized mortality ratio, and age of death compared with matched controls. Individuals with SCA, compared with controls, had higher Charlson Comorbidity Index scores (47,XXY: mean [SD], 4.30 [2.72] vs controls: mean [SD], 3.90 [2.47]; 47,XYY: mean [SD], 4.45 [2.90] vs controls: mean [SD], 3.82 [2.50]) and health care utilization (eg, median [IQR] outpatient encounters per year: 47,XXY, 22.6 [11.8-37.8] vs controls, 16.8 [9.4-28]; 47,XYY: 21.4 [12.4-33.8] vs controls: 17.0 [9.4-28.2]), while several measures of HRQOL were lower (eg, mean [SD] self-reported physical function: 47,XXY: 34.2 [12] vs control mean [SD] 37.8 [12.8]; 47,XYY: 36.3 [11.6] vs control 37.9 [12.8]). Men with a clinical diagnosis of 47,XXY, compared with individuals without a clinical diagnosis, had higher health care utilization (eg, median [IQR] encounters per year: 26.6 [14.9-43.2] vs 22.2 [11.3-36.0]) but lower Charlson Comorbidity Index scores (mean [SD]: 3.7 [2.7] vs 4.5 [4.1]). Conclusion and Relevance:In this case-control study of men with 47,XXY and 47,XYY syndromes, prevalence of SCA was comparable with estimates in the general population. While these men had successfully served in the military, they had higher morbidity and reported poorer HRQOL with aging. Longer longitudinal follow-up of this sample will be informative for clinical and patient-reported outcomes, the role of ancestry, and mortality statistics.
10.1001/jamanetworkopen.2024.4113
Chromosomal abnormalities of 19,000 couples with recurrent spontaneous abortions: a multicenter study.
Fertility and sterility
OBJECTIVE:To investigate the demographic data and karyotypes of 19,000 couples who experienced recurrent spontaneous abortion (RSA). DESIGN:A cross-sectional study of 19,000 couples. SETTING:Five hospitals. PATIENT(S):A total of 19,000 couples experiencing RSA. INTERVENTION(S):Not applicable. MAIN OUTCOME MEASURE(S):Cytogenetic analysis of blood lymphocytes. RESULT(S):A total of 844 couples (4.44%) showed chromosomal aberrations in either partner. Females were more likely to have chromosomal aberrations. The mean age of females and males with chromosomal aberrations was younger than that of females and males without chromosomal aberrations. Interestingly, sex and age distribution varied significantly depending on the subtypes of chromosomal aberrations. We detected 324 balanced translocations, including 223 novel ones. They were distributed across all chromosomes; the frequency of balanced translocations decreased according to the numerical order of autosomes (strong negative correlation; r = -0.84). Individuals with balanced translocations were younger than other groups. All 58 inversions, including 25 novel ones, were detected in autosomes; the negative correlation also existed. Thirteen Robertsonian translocations, 5 deletions, and 3 duplications were detected. Six types of Turner variants, triple X mosaicism, and mosaic Down syndrome were detected in females; Klinefelter variants and mosaic XYY syndrome were detected in males. Marker chromosomes at various mosaic levels and 7 different complex chromosomal rearrangements were also observed. CONCLUSION(S):Patients who experienced RSA induced by chromosomal aberrations experienced miscarriages at a younger age. Significant correlations existed between the patients' age or sex and the subtypes of chromosomal aberrations. This study detected several chromosomal abnormalities associated with RSA, including various novel aberrations.
10.1016/j.fertnstert.2022.01.011
Mosaic chromosomal alterations in peripheral blood leukocytes of children in sub-Saharan Africa.
Nature communications
In high-income countries, mosaic chromosomal alterations in peripheral blood leukocytes are associated with an elevated risk of adverse health outcomes, including hematologic malignancies. We investigate mosaic chromosomal alterations in sub-Saharan Africa among 931 children with Burkitt lymphoma, an aggressive lymphoma commonly characterized by immunoglobulin-MYC chromosomal rearrangements, 3822 Burkitt lymphoma-free children, and 674 cancer-free men from Ghana. We find autosomal and X chromosome mosaic chromosomal alterations in 3.4% and 1.7% of Burkitt lymphoma-free children, and 8.4% and 3.7% of children with Burkitt lymphoma (P-values = 5.7×10 and 3.74×10, respectively). Autosomal mosaic chromosomal alterations are detected in 14.0% of Ghanaian men and increase with age. Mosaic chromosomal alterations in Burkitt lymphoma cases include gains on chromosomes 1q and 8, the latter spanning MYC, while mosaic chromosomal alterations in Burkitt lymphoma-free children include copy-neutral loss of heterozygosity on chromosomes 10, 14, and 16. Our results highlight mosaic chromosomal alterations in sub-Saharan African populations as a promising area of research.
10.1038/s41467-023-43881-0
The Contribution of Mosaic Chromosomal Alterations to Schizophrenia.
Biological psychiatry
BACKGROUND:Mosaic chromosomal alterations are implicated in neuropsychiatric disorders, but the contribution to schizophrenia (SCZ) risk for somatic copy number variations (sCNVs) emerging in early developmental stages has not been fully established. METHODS:We analyzed blood-derived genotype arrays from 9715 patients with SCZ and 28,822 control participants of Chinese descent using a computational tool (MoChA) based on long-range chromosomal information to detect mosaic chromosomal alterations. We focused on probable early developmental sCNVs through stringent filtering. We assessed the burden of sCNVs across varying cell fraction cutoffs, as well as the frequency with which genes were involved in sCNVs. We integrated this data with the PGC (Psychiatric Genomics Consortium) dataset, which comprises 12,834 SCZ cases and 11,648 controls of European descent, and complemented it with genotyping data from postmortem brain tissue of 936 participants (449 cases and 487 controls). RESULTS:Patients with SCZ had a significantly higher somatic losses detection rate than control participants (1.00% vs. 0.52%; odds ratio = 1.91; 95% CI, 1.47-2.49; two-sided Fisher's exact test, p = 1.49 × 10). Further analysis indicated that the odds ratios escalated proportionately (from 1.91 to 2.78) with the increment in cell fraction cutoffs. Recurrent sCNVs associated with SCZ (odds ratio > 8; Fisher's exact test, p < .05) were identified, including notable regions at 10q21.1 (ZWINT), 3q26.1 (SLITRK3), 1q31.1 (BRINP3) and 12q21.31-21.32 (MGAT4C and NTS) in the Chinese cohort, and some regions were validated with PGC data. Cross-tissue validation pinpointed somatic losses at loci like 1p35.3-35.2 and 19p13.3-13.2. CONCLUSIONS:The study highlights the significant impact of mosaic chromosomal alterations on SCZ, suggesting their pivotal role in the disorder's genetic etiology.
10.1016/j.biopsych.2024.06.015
A multicenter analysis of individuals with a 47,XXY/46,XX karyotype.
Genetics in medicine : official journal of the American College of Medical Genetics
PURPOSE:Klinefelter syndrome, a sex chromosome aneuploidy (SCA), is associated with a 47,XXY chromosomal complement and is diagnosed in ∼1:600 live male births. Individuals with a 46,XX cell line, in addition to 47,XXY, are less common with a limited number of published case reports. METHODOLOGY:To better understand the implications of a 47,XXY/46,XX karyotype, we conducted a retrospective, multicenter analysis of the cytogenetic findings and associated clinical records of 34 patients diagnosed with this SCA across 14 institutions. RESULTS:Presence of the XX cell line ranged from 5% to 98% in patient specimens. Phenotypes also exhibited significant heterogeneity with some reporting a single reason for referral and others presenting with a constellation of symptoms, including ambiguous genitalia and ovotestes. Ovotestes were present in 12% of individuals in this cohort, who had a significantly higher percentage of XX cells. Notably, 2 patients were assigned female sex at birth. CONCLUSION:These findings highlight the variability of the clinical phenotypes associated with this SCA, as well as the challenges of clinical management for this population. Karyotype or fluorescence in situ hybridization analysis, which offer single-cell resolution, rather than chromosomal microarray or molecular testing, is the ideal test strategy in these instances as mosaicism can occur at low levels.
10.1016/j.gim.2024.101212
Mosaic Loss of Chromosome Y in Blood Is Associated with Alzheimer Disease.
American journal of human genetics
Men have a shorter life expectancy compared with women but the underlying factor(s) are not clear. Late-onset, sporadic Alzheimer disease (AD) is a common and lethal neurodegenerative disorder and many germline inherited variants have been found to influence the risk of developing AD. Our previous results show that a fundamentally different genetic variant, i.e., lifetime-acquired loss of chromosome Y (LOY) in blood cells, is associated with all-cause mortality and an increased risk of non-hematological tumors and that LOY could be induced by tobacco smoking. We tested here a hypothesis that men with LOY are more susceptible to AD and show that LOY is associated with AD in three independent studies of different types. In a case-control study, males with AD diagnosis had higher degree of LOY mosaicism (adjusted odds ratio = 2.80, p = 0.0184, AD events = 606). Furthermore, in two prospective studies, men with LOY at blood sampling had greater risk for incident AD diagnosis during follow-up time (hazard ratio [HR] = 6.80, 95% confidence interval [95% CI] = 2.16-21.43, AD events = 140, p = 0.0011). Thus, LOY in blood is associated with risks of both AD and cancer, suggesting a role of LOY in blood cells on disease processes in other tissues, possibly via defective immunosurveillance. As a male-specific risk factor, LOY might explain why males on average live shorter lives than females.
10.1016/j.ajhg.2016.05.014
Evaluation of clonal hematopoiesis and mosaic loss of Y chromosome in cardiovascular risk: An analysis in prospective studies.
eLife
Background:Clonal hematopoiesis of indeterminate potential (CHIP) was initially linked to a twofold increase in atherothrombotic events. However, recent investigations have revealed a more nuanced picture, suggesting that CHIP may confer only a modest rise in myocardial infarction (MI) risk. This observed lower risk might be influenced by yet unidentified factors that modulate the pathological effects of CHIP. Mosaic loss of the Y chromosome (mLOY), a common marker of clonal hematopoiesis in men, has emerged as a potential candidate for modulating cardiovascular risk associated with CHIP. In this study, we aimed to ascertain the risk linked to each somatic mutation or mLOY and explore whether mLOY could exert an influence on the cardiovascular risk associated with CHIP. Methods:We conducted an examination for the presence of CHIP and mLOY using targeted high-throughput sequencing and digital PCR in a cohort of 446 individuals. Among them, 149 patients from the CHAth study had experienced a first MI at the time of inclusion (MI(+) subjects), while 297 individuals from the Three-City cohort had no history of cardiovascular events (CVE) at the time of inclusion (MI(-) subjects). All subjects underwent thorough cardiovascular phenotyping, including a direct assessment of atherosclerotic burden. Our investigation aimed to determine whether mLOY could modulate inflammation, atherosclerosis burden, and atherothrombotic risk associated with CHIP. Results:CHIP and mLOY were detected with a substantial prevalence (45.1% and 37.7%, respectively), and their occurrence was similar between MI(+) and MI(-) subjects. Notably, nearly 40% of CHIP(+) male subjects also exhibited mLOY. Interestingly, neither CHIP nor mLOY independently resulted in significant increases in plasma hs-CRP levels, atherosclerotic burden, or MI incidence. Moreover, mLOY did not amplify or diminish inflammation, atherosclerosis, or MI incidence among CHIP(+) male subjects. Conversely, in MI(-) male subjects, CHIP heightened the risk of MI over a 5 y period, particularly in those lacking mLOY. Conclusions:Our study highlights the high prevalence of CHIP and mLOY in elderly individuals. Importantly, our results demonstrate that neither CHIP nor mLOY in isolation substantially contributes to inflammation, atherosclerosis, or MI incidence. Furthermore, we find that mLOY does not exert a significant influence on the modulation of inflammation, atherosclerosis burden, or atherothrombotic risk associated with CHIP. However, CHIP may accelerate the occurrence of MI, especially when unaccompanied by mLOY. These findings underscore the complexity of the interplay between CHIP, mLOY, and cardiovascular risk, suggesting that large-scale studies with thousands more patients may be necessary to elucidate subtle correlations. Funding:This study was supported by the Fondation Cœur & Recherche (the Société Française de Cardiologie), the Fédération Française de Cardiologie, ERA-CVD (« CHEMICAL » consortium, JTC 2019) and the Fondation Université de Bordeaux. The laboratory of Hematology of the University Hospital of Bordeaux benefitted of a convention with the Nouvelle Aquitaine Region (2018-1R30113-8473520) for the acquisition of the Nextseq 550Dx sequencer used in this study. Clinical trial number:NCT04581057.
10.7554/eLife.96150
Section E6.1-6.6 of the American College of Medical Genetics and Genomics (ACMG) Technical Laboratory Standards: Cytogenomic studies of acquired chromosomal abnormalities in neoplastic blood, bone marrow, and lymph nodes.
Genetics in medicine : official journal of the American College of Medical Genetics
Cytogenomic analyses of acquired clonal chromosomal abnormalities in neoplastic blood, bone marrow, and/or lymph nodes are instrumental in the clinical management of patients with hematologic neoplasms. Cytogenetic analyses assist in the diagnosis of such disorders and can provide important prognostic information. Furthermore, cytogenetic studies can provide crucial information regarding specific genetically defined subtypes of these neoplasms that may have targeted therapies. At time of relapse, cytogenetic analysis can confirm recurrence of the original neoplasm, detect clonal disease evolution, or uncover a new unrelated neoplastic process. This section deals specifically with the technical standards applicable to cytogenomic studies of acquired clonal chromosomal abnormalities in neoplastic blood, bone marrow, and/or lymph nodes. This updated Section E6.1-6.6 supersedes the previous Section E6 in Section E: Clinical Cytogenetics of the American College of Medical Genetics and Genomics Technical Standards for Clinical Genetics Laboratories.
10.1016/j.gim.2023.101054
Impact of the presence and number of chromosomal abnormalities on the clinical outcome in Waldenström Macroglobulinemia: a monocentric experience.
Annals of hematology
The prognostic and predictive role of specific gene mutations in Waldenström Macroglobulinemia (WM) is well-ascertained whereas the clinical impact of chromosome aberrations is far less known. Recent work has provided initial evidence for an adverse prognostic impact of some aberrations, such as del(6q), while other studies suggest a possible relationship between some clinical features (e.g. advanced age and/or inflammatory status) and specific cytogenetic abnormalities. To add to the still limited knowledge on WM cytogenetics and its clinical implications, we herein report our experience in a cohort of WM patients across 23 years. Based on our retrospective study, we found that abnormal karyotype was more represented in older patients and maintained a statistically significant independence from other molecular, clinical, and biological features related to WM. The presence and number of cytogenetic aberrations correlated with inferior overall and progression-free survival outcomes regardless of the type of single chromosome aberration. Our data suggests that the role of the altered karyotype deserves to be further clarified especially in elderly WM patients, in whom cytogenetic abnormalities and disease biology appear to be characterized by a higher degree of complexity.
10.1007/s00277-024-05770-4
Maternal Exposure to Per- and Polyfluoroalkyl Substances and Offspring Chromosomal Abnormalities: The Japan Environment and Children's Study.
Environmental health perspectives
BACKGROUND:Although recent experimental results have raised the question of whether maternal exposure to per- and polyfluoroalkyl substances (PFAS) may be a potential environmental risk factor for chromosomal abnormalities, epidemiological studies investigating these associations are lacking. OBJECTIVES:This study examined whether prenatal PFAS exposure is associated with a higher prevalence of chromosomal abnormalities among offspring. METHODS:We used data from the Japan Environment and Children's Study, a nationwide birth cohort study, and employed logistic regression models to examine the associations between maternal plasma PFAS concentrations in the first trimester and the diagnosis of chromosomal abnormalities in all births (artificial abortions, miscarriages, stillbirths, and live births) up to 2 years of age. In addition, we examined associations with mixtures of PFAS using multipollutant models. RESULTS:The final sample consisted of 24,724 births with singleton pregnancies, of which 44 confirmed cases of chromosomal abnormalities were identified (prevalence: 17.8/10,000 births). When examined individually, exposure to perfluorononanoic acid (PFNA) and perfluorooctane sulfonic acid (PFOS) showed positive associations with any chromosomal abnormalities with age-adjusted odds ratios of 1.81 (95% CI: 1.26, 2.61) and 2.08 (95% CI: 1.41, 3.07) per doubling in concentration, respectively. These associations remained significant after Bonferroni correction, although they did not reach the adjusted significance threshold in certain sensitivity analyses. Furthermore, the doubling in all PFAS included as a mixture was associated with chromosomal abnormalities, indicating an age-adjusted odds ratio of 2.25 (95% CI: 1.34, 3.80), with PFOS as the predominant contributor, followed by PFNA, perfluoroundecanoic acid (PFUnA), and perfluorooctanoic acid (PFOA). DISCUSSION:The study findings suggested a potential association between maternal exposure to PFAS, particularly PFOS, and chromosomal abnormalities in offspring. However, the results should be interpreted cautiously, because selection bias arising from the recruitment of women in early pregnancy may explain the associations. https://doi.org/10.1289/EHP13617.
10.1289/EHP13617
16p11.2 Copy Number Variations and Neurodevelopmental Disorders.
Rein Benjamin,Yan Zhen
Trends in neurosciences
Copy number variations (CNVs) of the human 16p11.2 genetic locus are associated with a range of neurodevelopmental disorders, including autism spectrum disorder, intellectual disability, and epilepsy. In this review, we delineate genetic information and diverse phenotypes in individuals with 16p11.2 CNVs, and synthesize preclinical findings from transgenic mouse models of 16p11.2 CNVs. Mice with 16p11.2 deletions or duplications recapitulate many core behavioral phenotypes, including social and cognitive deficits, and exhibit altered synaptic function across various brain areas. Mechanisms of transcriptional dysregulation and cortical maldevelopment are reviewed, along with potential therapeutic intervention strategies.
10.1016/j.tins.2020.09.001
Recurrent inversion polymorphisms in humans associate with genetic instability and genomic disorders.
Cell
Unlike copy number variants (CNVs), inversions remain an underexplored genetic variation class. By integrating multiple genomic technologies, we discover 729 inversions in 41 human genomes. Approximately 85% of inversions <2 kbp form by twin-priming during L1 retrotransposition; 80% of the larger inversions are balanced and affect twice as many nucleotides as CNVs. Balanced inversions show an excess of common variants, and 72% are flanked by segmental duplications (SDs) or retrotransposons. Since flanking repeats promote non-allelic homologous recombination, we developed complementary approaches to identify recurrent inversion formation. We describe 40 recurrent inversions encompassing 0.6% of the genome, showing inversion rates up to 2.7 × 10 per locus per generation. Recurrent inversions exhibit a sex-chromosomal bias and co-localize with genomic disorder critical regions. We propose that inversion recurrence results in an elevated number of heterozygous carriers and structural SD diversity, which increases mutability in the population and predisposes specific haplotypes to disease-causing CNVs.
10.1016/j.cell.2022.04.017
Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder.
Girirajan Santhosh,Dennis Megan Y,Baker Carl,Malig Maika,Coe Bradley P,Campbell Catarina D,Mark Kenneth,Vu Tiffany H,Alkan Can,Cheng Ze,Biesecker Leslie G,Bernier Raphael,Eichler Evan E
American journal of human genetics
Rare copy-number variants (CNVs) have been implicated in autism and intellectual disability. These variants are large and affect many genes but lack clear specificity toward autism as opposed to developmental-delay phenotypes. We exploited the repeat architecture of the genome to target segmental duplication-mediated rearrangement hotspots (n = 120, median size 1.78 Mbp, range 240 kbp to 13 Mbp) and smaller hotspots flanked by repetitive sequence (n = 1,247, median size 79 kbp, range 3-96 kbp) in 2,588 autistic individuals from simplex and multiplex families and in 580 controls. Our analysis identified several recurrent large hotspot events, including association with 1q21 duplications, which are more likely to be identified in individuals with autism than in those with developmental delay (p = 0.01; OR = 2.7). Within larger hotspots, we also identified smaller atypical CNVs that implicated CHD1L and ACACA for the 1q21 and 17q12 deletions, respectively. Our analysis, however, suggested no overall increase in the burden of smaller hotspots in autistic individuals as compared to controls. By focusing on gene-disruptive events, we identified recurrent CNVs, including DPP10, PLCB1, TRPM1, NRXN1, FHIT, and HYDIN, that are enriched in autism. We found that as the size of deletions increases, nonverbal IQ significantly decreases, but there is no impact on autism severity; and as the size of duplications increases, autism severity significantly increases but nonverbal IQ is not affected. The absence of an increased burden of smaller CNVs in individuals with autism and the failure of most large hotspots to refine to single genes is consistent with a model where imbalance of multiple genes contributes to a disease state.
10.1016/j.ajhg.2012.12.016
Noninvasive detection of fetal subchromosome abnormalities via deep sequencing of maternal plasma.
American journal of human genetics
The purpose of this study was to determine the deep sequencing and analytic conditions needed to detect fetal subchromosome abnormalities across the genome from a maternal blood sample. Cell-free (cf) DNA was isolated from the plasma of 11 pregnant women carrying fetuses with subchromosomal duplications and deletions, translocations, mosaicism, and trisomy 20 diagnosed by metaphase karyotype. Massively parallel sequencing (MPS) was performed with 25-mer tags at approximately 10(9) tags per sample and mapped to reference human genome assembly hg19. Tags were counted and normalized to fixed genome bin sizes of 1 Mb or 100 kb to detect statistically distinct copy-number changes compared to the reference. All seven cases of microdeletions, duplications, translocations, and the trisomy 20 were detected blindly by MPS, including a microdeletion as small as 300 kb. In two of these cases in which the metaphase karyotype showed additional material of unknown origin, MPS identified both the translocation breakpoint and the chromosomal origin of the additional material. In the four mosaic cases, the subchromosomal abnormality was not demonstrated by MPS. This work shows that in nonmosaic cases, it is possible to obtain a fetal molecular karyotype by MPS of maternal plasma cfDNA that is equivalent to a chromosome microarray and in some cases is better than a metaphase karyotype. This approach combines the advantage of enhanced fetal genomic resolution with the improved safety of a noninvasive maternal blood test.
10.1016/j.ajhg.2012.12.006
MCM9 mutations are associated with ovarian failure, short stature, and chromosomal instability.
Wood-Trageser Michelle A,Gurbuz Fatih,Yatsenko Svetlana A,Jeffries Elizabeth P,Kotan L Damla,Surti Urvashi,Ketterer Deborah M,Matic Jelena,Chipkin Jacqueline,Jiang Huaiyang,Trakselis Michael A,Topaloglu A Kemal,Rajkovic Aleksandar
American journal of human genetics
Premature ovarian failure (POF) is genetically heterogeneous and manifests as hypergonadotropic hypogonadism either as part of a syndrome or in isolation. We studied two unrelated consanguineous families with daughters exhibiting primary amenorrhea, short stature, and a 46,XX karyotype. A combination of SNP arrays, comparative genomic hybridization arrays, and whole-exome sequencing analyses identified homozygous pathogenic variants in MCM9, a gene implicated in homologous recombination and repair of double-stranded DNA breaks. In one family, the MCM9 c.1732+2T>C variant alters a splice donor site, resulting in abnormal alternative splicing and truncated forms of MCM9 that are unable to be recruited to sites of DNA damage. In the second family, MCM9 c.394C>T (p.Arg132(∗)) results in a predicted loss of functional MCM9. Repair of chromosome breaks was impaired in lymphocytes from affected, but not unaffected, females in both families, consistent with MCM9 function in homologous recombination. Autosomal-recessive variants in MCM9 cause a genomic-instability syndrome associated with hypergonadotropic hypogonadism and short stature. Preferential sensitivity of germline meiosis to MCM9 functional deficiency and compromised DNA repair in the somatic component most likely account for the ovarian failure and short stature.
10.1016/j.ajhg.2014.11.002
When to Perform Karyotype Analysis in Infertile Men? Validation of the European Association of Urology Guidelines with the Proposal of a New Predictive Model.
Ventimiglia Eugenio,Capogrosso Paolo,Boeri Luca,Pederzoli Filippo,Cazzaniga Walter,Scano Roberta,Ippolito Silvia,Fossati Nicola,Alfano Massimo,Montorsi Francesco,Salonia Andrea
European urology
Known genetic alterations play a major role in perturbing male reproductive health. We sought to retrospectively validate the European Association of Urology (EAU) guidelines for karyotype analysis (KA) in a homogenous cohort of 1168 White European men presenting for primary couple's infertility (noninterracial infertile couples only) and to develop a novel nomogram capable of predicting karyotype alterations. Overall, 742 (63.5%) patients would have deserved KA according to the EAU guidelines. Of those, 48 (6.9% of the assessable patients according to EAU guidelines) displayed any kind of alteration at KA. Conversely, hypothetically relying on the EAU criteria, 12 (20%) out of 60 patients with karyotype abnormalities would not have been candidates for the same genetic assessment. Overall, 694 (62.6%) patients would have been candidates for genetic workup despite having a normal karyotype. As a whole, the EAU guideline sensitivity, specificity, and discrimination were 80%, 37%, and 59%, respectively. We developed a novel nomogram, with a 2% probability cut-off, which allows for a more careful detection of KA alterations. PATIENT SUMMARY:The application of the European Association of Urology guidelines for karyotype analysis does not ensure an adequate diagnostic process. In this regard, we propose a novel diagnostic tool to improve detection of alterations at karyotype analysis.
10.1016/j.eururo.2016.06.015
RNA-seq as a tool for evaluating human embryo competence.
Groff Abigail F,Resetkova Nina,DiDomenico Francesca,Sakkas Denny,Penzias Alan,Rinn John L,Eggan Kevin
Genome research
The majority of embryos created through in vitro fertilization (IVF) do not implant. It seems plausible that rates of implantation would improve if we had a better understanding of molecular factors affecting embryo competence. Currently, the process of selecting an embryo for uterine transfer uses an ad hoc combination of morphological criteria, the kinetics of development, and genetic testing for aneuploidy. However, no single criterion can ensure selection of a viable embryo. In contrast, RNA-sequencing (RNA-seq) of embryos could yield high-dimensional data, which may provide additional insight and illuminate the discrepancies among current selection criteria. Recent advances enabling the production of RNA-seq libraries from single cells have facilitated the application of this technique to the study of transcriptional events in early human development. However, these studies have not assessed the quality of their constituent embryos relative to commonly used embryological criteria. Here, we perform proof-of-principle advancement to embryo selection procedures by generating RNA-seq libraries from a trophectoderm biopsy as well as the remaining whole embryo. We combine state-of-the-art embryological methods with low-input RNA-seq to develop the first transcriptome-wide approach for assessing embryo competence. Specifically, we show the capacity of RNA-seq as a promising tool in preimplantation screening by showing that biopsies of an embryo can capture valuable information available in the whole embryo from which they are derived. Furthermore, we show that this technique can be used to generate a RNA-based digital karyotype and to identify candidate competence-associated genes. Together, these data establish the foundation for a future RNA-based diagnostic in IVF.
10.1101/gr.252981.119
Cryptic and complex chromosomal aberrations in early-onset neuropsychiatric disorders.
Brand Harrison,Pillalamarri Vamsee,Collins Ryan L,Eggert Stacey,O'Dushlaine Colm,Braaten Ellen B,Stone Matthew R,Chambert Kimberly,Doty Nathan D,Hanscom Carrie,Rosenfeld Jill A,Ditmars Hillary,Blais Jessica,Mills Ryan,Lee Charles,Gusella James F,McCarroll Steven,Smoller Jordan W,Talkowski Michael E,Doyle Alysa E
American journal of human genetics
Structural variation (SV) is a significant component of the genetic etiology of both neurodevelopmental and psychiatric disorders; however, routine guidelines for clinical genetic screening have been established only in the former category. Genome-wide chromosomal microarray (CMA) can detect genomic imbalances such as copy-number variants (CNVs), but balanced chromosomal abnormalities (BCAs) still require karyotyping for clinical detection. Moreover, submicroscopic BCAs and subarray threshold CNVs are intractable, or cryptic, to both CMA and karyotyping. Here, we performed whole-genome sequencing using large-insert jumping libraries to delineate both cytogenetically visible and cryptic SVs in a single test among 30 clinically referred youth representing a range of severe neuropsychiatric conditions. We detected 96 SVs per person on average that passed filtering criteria above our highest-confidence resolution (6,305 bp) and an additional 111 SVs per genome below this resolution. These SVs rearranged 3.8 Mb of genomic sequence and resulted in 42 putative loss-of-function (LoF) or gain-of-function mutations per person. We estimate that 80% of the LoF variants were cryptic to clinical CMA. We found myriad complex and cryptic rearrangements, including a "paired" duplication (360 kb, 169 kb) that flanks a 5.25 Mb inversion that appears in 7 additional cases from clinical CNV data among 47,562 individuals. Following convergent genomic profiling of these independent clinical CNV data, we interpreted three SVs to be of potential clinical significance. These data indicate that sequence-based delineation of the full SV mutational spectrum warrants exploration in youth referred for neuropsychiatric evaluation and clinical diagnostic SV screening more broadly.
10.1016/j.ajhg.2014.09.005
Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies.
Genome biology
BACKGROUND:Chromosome instability leads to aneuploidy, a state in which cells have abnormal numbers of chromosomes, and is found in two out of three cancers. In a chromosomal instable p53 deficient mouse model with accelerated lymphomagenesis, we previously observed whole chromosome copy number changes affecting all lymphoma cells. This suggests that chromosome instability is somehow suppressed in the aneuploid lymphomas or that selection for frequently lost/gained chromosomes out-competes the CIN-imposed mis-segregation. RESULTS:To distinguish between these explanations and to examine karyotype dynamics in chromosome instable lymphoma, we use a newly developed single-cell whole genome sequencing (scWGS) platform that provides a complete and unbiased overview of copy number variations (CNV) in individual cells. To analyse these scWGS data, we develop AneuFinder, which allows annotation of copy number changes in a fully automated fashion and quantification of CNV heterogeneity between cells. Single-cell sequencing and AneuFinder analysis reveals high levels of copy number heterogeneity in chromosome instability-driven murine T-cell lymphoma samples, indicating ongoing chromosome instability. Application of this technology to human B cell leukaemias reveals different levels of karyotype heterogeneity in these cancers. CONCLUSION:Our data show that even though aneuploid tumours select for particular and recurring chromosome combinations, single-cell analysis using AneuFinder reveals copy number heterogeneity. This suggests ongoing chromosome instability that other platforms fail to detect. As chromosome instability might drive tumour evolution, karyotype analysis using single-cell sequencing technology could become an essential tool for cancer treatment stratification.
10.1186/s13059-016-0971-7
GATA4 loss of function in liver cancer impedes precursor to hepatocyte transition.
Enane Francis O,Shuen Wai Ho,Gu Xiaorong,Quteba Ebrahem,Przychodzen Bartlomiej,Makishima Hideki,Bodo Juraj,Ng Joanna,Chee Chit Lai,Ba Rebecca,Seng Koh Lip,Lim Janice,Cheong Rachael,Teo Marissa,Hu Zhenbo,Ng Kwok Peng,Maciejewski Jaroslaw,Radivoyevitch Tomas,Chung Alexander,Ooi London Lucien,Tan Yu Meng,Cheow Peng-Chung,Chow Pierce,Chan Chung Yip,Lim Kiat Hon,Yerian Lisa,Hsi Eric,Toh Han Chong,Saunthararajah Yogen
The Journal of clinical investigation
The most frequent chromosomal structural loss in hepatocellular carcinoma (HCC) is of the short arm of chromosome 8 (8p). Genes on the remaining homologous chromosome, however, are not recurrently mutated, and the identity of key 8p tumor-suppressor genes (TSG) is unknown. In this work, analysis of minimal commonly deleted 8p segments to identify candidate TSG implicated GATA4, a master transcription factor driver of hepatocyte epithelial lineage fate. In a murine model, liver-conditional deletion of 1 Gata4 allele to model the haploinsufficiency seen in HCC produced enlarged livers with a gene expression profile of persistent precursor proliferation and failed hepatocyte epithelial differentiation. HCC mimicked this gene expression profile, even in cases that were morphologically classified as well differentiated. HCC with intact chromosome 8p also featured GATA4 loss of function via GATA4 germline mutations that abrogated GATA4 interactions with a coactivator, MED12, or by inactivating mutations directly in GATA4 coactivators, including ARID1A. GATA4 reintroduction into GATA4-haploinsufficient HCC cells or ARID1A reintroduction into ARID1A-mutant/GATA4-intact HCC cells activated hundreds of hepatocyte genes and quenched the proliferative precursor program. Thus, disruption of GATA4-mediated transactivation in HCC suppresses hepatocyte epithelial differentiation to sustain replicative precursor phenotype.
10.1172/JCI93488
Ribosomal DNA Instability as a Potential Cause of Karyotype Evolution.
Molecular biology and evolution
Karyotype refers to the configuration of the genome into a set of chromosomes. The karyotype difference between species is expected to impede various biological processes, such as chromosome segregation and meiotic chromosome pairing, potentially contributing to incompatibility. Karyotypes can rapidly change between closely related species and even among populations of the same species. However, the forces driving karyotype evolution are poorly understood. Here we describe a unique karyotype of a Drosophila melanogaster strain isolated from the Seychelles archipelago. This strain has lost the ribosomal DNA (rDNA) locus on the X chromosome. Because the Y chromosome is the only other rDNA-bearing chromosome, all females carry at least one Y chromosome as the source of rDNA. Interestingly, we found that the strain also carries a truncated Y chromosome (YS) that is stably maintained in the population despite its inability to support male fertility. Our modeling and cytological analysis suggest that the Y chromosome has a larger negative impact on female fitness than the YS chromosome. Moreover, we generated an independent strain that lacks X rDNA and has a karyotype of XXY females and XY males. This strain quickly evolved multiple karyotypes: two new truncated Y chromosomes (similar to YS), as well as two independent X chromosome fusions that contain the Y-derived rDNA fragment, eliminating females' dependence on the Y chromosome. Considering that Robertsonian fusions frequently occur at rDNA loci in humans, we propose that rDNA loci instability may be one of driving forces of karyotype evolution.
10.1093/molbev/msac221
A transchromosomic rat model with human chromosome 21 shows robust Down syndrome features.
American journal of human genetics
Progress in earlier detection and clinical management has increased life expectancy and quality of life in people with Down syndrome (DS). However, no drug has been approved to help individuals with DS live independently and fully. Although rat models could support more robust physiological, behavioral, and toxicology analysis than mouse models during preclinical validation, no DS rat model is available as a result of technical challenges. We developed a transchromosomic rat model of DS, TcHSA21rat, which contains a freely segregating, EGFP-inserted, human chromosome 21 (HSA21) with >93% of its protein-coding genes. RNA-seq of neonatal forebrains demonstrates that TcHSA21rat expresses HSA21 genes and has an imbalance in global gene expression. Using EGFP as a marker for trisomic cells, flow cytometry analyses of peripheral blood cells from 361 adult TcHSA21rat animals show that 81% of animals retain HSA21 in >80% of cells, the criterion for a "Down syndrome karyotype" in people. TcHSA21rat exhibits learning and memory deficits and shows increased anxiety and hyperactivity. TcHSA21rat recapitulates well-characterized DS brain morphology, including smaller brain volume and reduced cerebellar size. In addition, the rat model shows reduced cerebellar foliation, which is not observed in DS mouse models. Moreover, TcHSA21rat exhibits anomalies in craniofacial morphology, heart development, husbandry, and stature. TcHSA21rat is a robust DS animal model that can facilitate DS basic research and provide a unique tool for preclinical validation to accelerate DS drug development.
10.1016/j.ajhg.2021.12.015
Ongoing chromosomal instability and karyotype evolution in human colorectal cancer organoids.
Bolhaqueiro Ana C F,Ponsioen Bas,Bakker Bjorn,Klaasen Sjoerd J,Kucukkose Emre,van Jaarsveld Richard H,Vivié Judith,Verlaan-Klink Ingrid,Hami Nizar,Spierings Diana C J,Sasaki Nobuo,Dutta Devanjali,Boj Sylvia F,Vries Robert G J,Lansdorp Peter M,van de Wetering Marc,van Oudenaarden Alexander,Clevers Hans,Kranenburg Onno,Foijer Floris,Snippert Hugo J G,Kops Geert J P L
Nature genetics
Chromosome segregation errors cause aneuploidy and genomic heterogeneity, which are hallmarks of cancer in humans. A persistent high frequency of these errors (chromosomal instability (CIN)) is predicted to profoundly impact tumor evolution and therapy response. It is unknown, however, how prevalent CIN is in human tumors. Using three-dimensional live-cell imaging of patient-derived tumor organoids (tumor PDOs), we show that CIN is widespread in colorectal carcinomas regardless of background genetic alterations, including microsatellite instability. Cell-fate tracking showed that, although mitotic errors are frequently followed by cell death, some tumor PDOs are largely insensitive to mitotic errors. Single-cell karyotype sequencing confirmed heterogeneity of copy number alterations in tumor PDOs and showed that monoclonal lines evolved novel karyotypes over time in vitro. We conclude that ongoing CIN is common in colorectal cancer organoids, and propose that CIN levels and the tolerance for mitotic errors shape aneuploidy landscapes and karyotype heterogeneity.
10.1038/s41588-019-0399-6
A national long-read sequencing study on chromosomal rearrangements uncovers hidden complexities.
Genome research
Clinical genetic laboratories often require a comprehensive analysis of chromosomal rearrangements/structural variants (SVs), from large events like translocations and inversions to supernumerary ring/marker chromosomes and small deletions or duplications. Understanding the complexity of these events and their clinical consequences requires pinpointing breakpoint junctions and resolving the derivative chromosome structure. This task often surpasses the capabilities of short-read sequencing technologies. In contrast, long-read sequencing techniques present a compelling alternative for clinical diagnostics. Here, Genomic Medicine Sweden-Rare Diseases has explored the utility of HiFi Revio long-read genome sequencing (lrGS) for digital karyotyping of SVs nationwide. The 16 samples from 13 families were collected from all Swedish healthcare regions. Prior investigations had identified 16 SVs, ranging from simple to complex rearrangements, including inversions, translocations, and copy number variants. We have established a national pipeline and a shared variant database for variant calling and filtering. Using lrGS, 14 of the 16 known SVs are detected. Of these, 13 are mapped at nucleotide resolution, and one complex rearrangement is only visible by read depth. Two Chromosome 21 rearrangements, one mosaic, remain undetected. Average read lengths are 8.3-18.8 kb with coverage exceeding 20× for all samples. De novo assembly results in a limited number of phased contigs per individual (N50 6-86 Mb), enabling direct characterization of the chromosomal rearrangements. In a national pilot study, we demonstrate the utility of HiFi Revio lrGS for analyzing chromosomal rearrangements. Based on our results, we propose a 5-year plan to expand lrGS use for rare disease diagnostics in Sweden.
10.1101/gr.279510.124
Computational Prediction of Position Effects of Apparently Balanced Human Chromosomal Rearrangements.
American journal of human genetics
Interpretation of variants of uncertain significance, especially chromosomal rearrangements in non-coding regions of the human genome, remains one of the biggest challenges in modern molecular diagnosis. To improve our understanding and interpretation of such variants, we used high-resolution three-dimensional chromosomal structural data and transcriptional regulatory information to predict position effects and their association with pathogenic phenotypes in 17 subjects with apparently balanced chromosomal abnormalities. We found that the rearrangements predict disruption of long-range chromatin interactions between several enhancers and genes whose annotated clinical features are strongly associated with the subjects' phenotypes. We confirm gene-expression changes for a couple of candidate genes to exemplify the utility of our analysis of position effect. These results highlight the important interplay between chromosomal structure and disease and demonstrate the need to utilize chromatin conformational data for the prediction of position effects in the clinical interpretation of non-coding chromosomal rearrangements.
10.1016/j.ajhg.2017.06.011
Intellectual disability: dendritic anomalies and emerging genetic perspectives.
Acta neuropathologica
Intellectual disability (ID) corresponds to several neurodevelopmental disorders of heterogeneous origin in which cognitive deficits are commonly associated with abnormalities of dendrites and dendritic spines. These histological changes in the brain serve as a proxy for underlying deficits in neuronal network connectivity, mostly a result of genetic factors. Historically, chromosomal abnormalities have been reported by conventional karyotyping, targeted fluorescence in situ hybridization (FISH), and chromosomal microarray analysis. More recently, cytogenomic mapping, whole-exome sequencing, and bioinformatic mining have led to the identification of novel candidate genes, including genes involved in neuritogenesis, dendrite maintenance, and synaptic plasticity. Greater understanding of the roles of these putative ID genes and their functional interactions might boost investigations into determining the plausible link between cellular and behavioral alterations as well as the mechanisms contributing to the cognitive impairment observed in ID. Genetic data combined with histological abnormalities, clinical presentation, and transgenic animal models provide support for the primacy of dysregulation in dendrite structure and function as the basis for the cognitive deficits observed in ID. In this review, we highlight the importance of dendrite pathophysiology in the etiologies of four prototypical ID syndromes, namely Down Syndrome (DS), Rett Syndrome (RTT), Digeorge Syndrome (DGS) and Fragile X Syndrome (FXS). Clinical characteristics of ID have also been reported in individuals with deletions in the long arm of chromosome 10 (the q26.2/q26.3), a region containing the gene for the collapsin response mediator protein 3 (CRMP3), also known as dihydropyrimidinase-related protein-4 (DRP-4, DPYSL4), which is involved in dendritogenesis. Following a discussion of clinical and genetic findings in these syndromes and their preclinical animal models, we lionize CRMP3/DPYSL4 as a novel candidate gene for ID that may be ripe for therapeutic intervention.
10.1007/s00401-020-02244-5
Application of exome sequencing for prenatal diagnosis of fetal structural anomalies: clinical experience and lessons learned from a cohort of 1618 fetuses.
Genome medicine
BACKGROUND:Exome sequencing (ES) is becoming more widely available in prenatal diagnosis. However, data on its clinical utility and integration into clinical management remain limited in practice. Herein, we report our experience implementing prenatal ES (pES) in a large cohort of fetuses with anomalies detected by ultrasonography using a hospital-based in-house multidisciplinary team (MDT) facilitated by a three-step genotype-driven followed by phenotype-driven analysis framework. METHODS:We performed pES in 1618 fetal cases with positive ultrasound findings but negative for karyotyping and chromosome microarray analysis between January 2014 and October 2021, including both retrospective (n=565) and prospective (n=1053) cohorts. The diagnostic efficiency and its correlation to organ systems involved, phenotypic spectrum, and the clinical impacts of pES results on pregnancy outcomes were analyzed. RESULTS:A genotype-driven followed by phenotype-driven three-step approach was carried out in all trio pES. Step 1, a genotype-driven analysis resulted in a diagnostic rate of 11.6% (187/1618). Step 2, a phenotype-driven comprehensive analysis yielded additional diagnostic findings for another 28 cases (1.7%; 28/1618). In the final step 3, data reanalyses based on new phenotypes and/or clinical requests found molecular diagnosis in 14 additional cases (0.9%; 14/1618). Altogether, 229 fetal cases (14.2%) received a molecular diagnosis, with a higher positive rate in the retrospective than the prospective cohort (17.3% vs. 12.4%, p<0.01). The diagnostic rates were highest in fetuses with skeletal anomalies (30.4%) and multiple organ involvements (25.9%), and lowest in fetuses with chest anomalies (0%). In addition, incidental and secondary findings with childhood-onset disorders were detected in 11 (0.7%) cases. Furthermore, we described the prenatal phenotypes for the first time for 27 gene-associated conditions (20.0%, 27/135) upon a systematic analysis of the diagnosed cases and expanded the phenotype spectrum for 26 (19.3%) genes where limited fetal phenotypic information was available. In the prospective cohort, the combined prenatal ultrasound and pES results had significantly impacted the clinical decisions (61.5%, 648/1053). CONCLUSIONS:The genotype-driven approach could identify about 81.7% positive cases (11.6% of the total cohort) with the initial limited fetal phenotype information considered. The following two steps of phenotype-driven analysis and data reanalyses helped us find the causative variants in an additional 2.6% of the entire cohort (18.3% of all positive findings). Our extensive phenotype analysis on a large number of molecularly confirmed prenatal cases had greatly enriched our current knowledge on fetal phenotype-genotype correlation, which may guide more focused prenatal ultrasound in the future. This is by far the largest pES cohort study that combines a robust trio sequence data analysis, systematic phenotype-genotype correlation, and well-established MDT in a single prenatal clinical setting. This work underlines the value of pES as an essential component in prenatal diagnosis in guiding medical management and parental decision making.
10.1186/s13073-022-01130-x
Single-cell multi-omics sequencing of human spermatogenesis reveals a DNA demethylation event associated with male meiotic recombination.
Nature cell biology
Human spermatogenesis is a highly ordered process; however, the roles of DNA methylation and chromatin accessibility in this process remain largely unknown. Here by simultaneously investigating the chromatin accessibility, DNA methylome and transcriptome landscapes using the modified single-cell chromatin overall omic-scale landscape sequencing approach, we revealed that the transcriptional changes throughout human spermatogenesis were correlated with chromatin accessibility changes. In particular, we identified a set of transcription factors and cis elements with potential functions. A round of DNA demethylation was uncovered upon meiosis initiation in human spermatogenesis, which was associated with male meiotic recombination and conserved between human and mouse. Aberrant DNA hypermethylation could be detected in leptotene spermatocytes of certain nonobstructive azoospermia patients. Functionally, the intervention of DNA demethylation affected male meiotic recombination and fertility. Our work provides multi-omics landscapes of human spermatogenesis at single-cell resolution and offers insights into the association between DNA demethylation and male meiotic recombination.
10.1038/s41556-023-01232-7
Genetic Architecture of Azoospermia-Time to Advance the Standard of Care.
European urology
BACKGROUND:Crypto- and azoospermia (very few/no sperm in the semen) are main contributors to male factor infertility. Genetic causes for spermatogenic failure (SPGF) include Klinefelter syndrome and Y-chromosomal azoospermia factor microdeletions, and CFTR mutations for obstructive azoospermia (OA). However, the majority of cases remain unexplained because monogenic causes are not analysed. OBJECTIVE:To elucidate the monogenic contribution to azoospermia by prospective exome sequencing and strict application of recent clinical guidelines. DESIGN, SETTING, AND PARTICIPANTS:Since January 2017, we studied crypto- and azoospermic men without chromosomal aberrations and Y-chromosomal microdeletions attending the Centre of Reproductive Medicine and Andrology, Münster. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS:We performed exome sequencing in 647 men, analysed 60 genes having at least previous limited clinical validity, and strictly assessed variants according to clinical guidelines. RESULTS AND LIMITATIONS:Overall, 55 patients (8.5%) with diagnostic genetic variants were identified. Of these patients, 20 (3.1%) carried mutations in CFTR or ADGRG2, and were diagnosed with OA. In 35 patients (5.4%) with SPGF, mutations in 20 different genes were identified. According to ClinGen criteria, 19 of the SPGF genes now reach at least moderate clinical validity. As limitations, only one transcript per gene was considered, and the list of genes is increasing rapidly so cannot be exhaustive. CONCLUSIONS:The number of diagnostic genes in crypto-/azoospermia was almost doubled to 21 using exome-based analyses and clinical guidelines. Application of this procedure in routine diagnostics will significantly improve the diagnostic yield and clinical workup as the results indicate the success rate of testicular sperm extraction. PATIENT SUMMARY:When no sperm are found in the semen, a man cannot conceive naturally. The causes are often unknown, but genetics play a major role. We searched for genetic variants in a large group of patients and found causal mutations for one in 12 men; these predict the chances for fatherhood.
10.1016/j.eururo.2022.05.011
Refining analyses of copy number variation identifies specific genes associated with developmental delay.
Nature genetics
Copy number variants (CNVs) are associated with many neurocognitive disorders; however, these events are typically large, and the underlying causative genes are unclear. We created an expanded CNV morbidity map from 29,085 children with developmental delay in comparison to 19,584 healthy controls, identifying 70 significant CNVs. We resequenced 26 candidate genes in 4,716 additional cases with developmental delay or autism and 2,193 controls. An integrated analysis of CNV and single-nucleotide variant (SNV) data pinpointed 10 genes enriched for putative loss of function. Follow-up of a subset of affected individuals identified new clinical subtypes of pediatric disease and the genes responsible for disease-associated CNVs. These genetic changes include haploinsufficiency of SETBP1 associated with intellectual disability and loss of expressive language and truncations of ZMYND11 in individuals with autism, aggression and complex neuropsychiatric features. This combined CNV and SNV approach facilitates the rapid discovery of new syndromes and genes involved in neuropsychiatric disease despite extensive genetic heterogeneity.
10.1038/ng.3092
The first mitotic division of human embryos is highly error prone.
Nature communications
Human beings are made of ~50 trillion cells which arise from serial mitotic divisions of a single cell - the fertilised egg. Remarkably, the early human embryo is often chromosomally abnormal, and many are mosaic, with the karyotype differing from one cell to another. Mosaicism presumably arises from chromosome segregation errors during the early mitotic divisions, although these events have never been visualised in living human embryos. Here, we establish live cell imaging of chromosome segregation using normally fertilised embryos from an egg-share-to-research programme, as well as embryos deselected during fertility treatment. We reveal that the first mitotic division has an extended prometaphase/metaphase and exhibits phenotypes that can cause nondisjunction. These included multipolar chromosome segregations and lagging chromosomes that lead to formation of micronuclei. Analysis of nuclear number and size provides evidence of equivalent phenotypes in 2-cell human embryos that gave rise to live births. Together this shows that errors in the first mitotic division can be tolerated in human embryos and uncovers cell biological events that contribute to preimplantation mosaicism.
10.1038/s41467-022-34294-6
Prevalence of chromosomal alterations in first-trimester spontaneous pregnancy loss.
Nature medicine
Pregnancy loss is often caused by chromosomal abnormalities of the conceptus. The prevalence of these abnormalities and the allocation of (ab)normal cells in embryonic and placental lineages during intrauterine development remain elusive. In this study, we analyzed 1,745 spontaneous pregnancy losses and found that roughly half (50.4%) of the products of conception (POCs) were karyotypically abnormal, with maternal and paternal age independently contributing to the increased genomic aberration rate. We applied genome haplarithmisis to a subset of 94 pregnancy losses with normal parental and POC karyotypes. Genotyping of parental DNA as well as POC extra-embryonic mesoderm and chorionic villi DNA, representing embryonic and trophoblastic tissues, enabled characterization of the genomic landscape of both lineages. Of these pregnancy losses, 35.1% had chromosomal aberrations not previously detected by karyotyping, increasing the rate of aberrations of pregnancy losses to 67.8% by extrapolation. In contrast to viable pregnancies where mosaic chromosomal abnormalities are often restricted to chorionic villi, such as confined placental mosaicism, we found a higher degree of mosaic chromosomal imbalances in extra-embryonic mesoderm rather than chorionic villi. Our results stress the importance of scrutinizing the full allelic architecture of genomic abnormalities in pregnancy loss to improve clinical management and basic research of this devastating condition.
10.1038/s41591-023-02645-5
Specialized replication mechanisms maintain genome stability at human centromeres.
Molecular cell
The high incidence of whole-arm chromosome aneuploidy and translocations in tumors suggests instability of centromeres, unique loci built on repetitive sequences and essential for chromosome separation. The causes behind this fragility and the mechanisms preserving centromere integrity remain elusive. We show that replication stress, hallmark of pre-cancerous lesions, promotes centromeric breakage in mitosis, due to spindle forces and endonuclease activities. Mechanistically, we unveil unique dynamics of the centromeric replisome distinct from the rest of the genome. Locus-specific proteomics identifies specialized DNA replication and repair proteins at centromeres, highlighting them as difficult-to-replicate regions. The translesion synthesis pathway, along with other factors, acts to sustain centromere replication and integrity. Prolonged stress causes centromeric alterations like ruptures and translocations, as observed in ovarian cancer models experiencing replication stress. This study provides unprecedented insights into centromere replication and integrity, proposing mechanistic insights into the origins of centromere alterations leading to abnormal cancerous karyotypes.
10.1016/j.molcel.2024.01.018
Gene copy-number changes and chromosomal instability induced by aneuploidy confer resistance to chemotherapy.
Ippolito Marica Rosaria,Martis Valentino,Martin Sara,Tijhuis Andréa E,Hong Christy,Wardenaar René,Dumont Marie,Zerbib Johanna,Spierings Diana C J,Fachinetti Daniele,Ben-David Uri,Foijer Floris,Santaguida Stefano
Developmental cell
Mitotic errors lead to aneuploidy, a condition of karyotype imbalance, frequently found in cancer cells. Alterations in chromosome copy number induce a wide variety of cellular stresses, including genome instability. Here, we show that cancer cells might exploit aneuploidy-induced genome instability and the resulting gene copy-number changes to survive under conditions of selective pressure, such as chemotherapy. Resistance to chemotherapeutic drugs was dictated by the acquisition of recurrent karyotypes, indicating that gene dosage might play a role in driving chemoresistance. Thus, our study establishes a causal link between aneuploidy-driven changes in gene copy number and chemoresistance and might explain why some chemotherapies fail to succeed.
10.1016/j.devcel.2021.07.006
Utility of peripheral blood for cytogenetic and mutation analysis in myelodysplastic syndrome.
Mohamedali Azim M,Alkhatabi Heba,Kulasekararaj Austin,Shinde Sneha,Mian Syed,Malik Farooq,Smith Alexander E,Gäken Joop,Mufti Ghulam J
Blood
Recent studies have shown that more than 80% of bone marrow (BM) samples from patients with myelodysplastic syndrome (MDS) harbor somatic mutations and/or genomic aberrations, which are of diagnostic and prognostic importance. We investigated the potential use of peripheral blood (PB) and serum to identify and monitor BM-derived genetic markers using high-resolution single nucleotide polymorphism array (SNP-A) karyotyping and parallel sequencing of 22 genes frequently mutated in MDS. This pilot study showed a 100% SNP-A karyotype concordance and a 97% mutation concordance between the BM and PB. In contrast, mutation analysis using Sanger sequencing of PB and serum-derived DNA showed only 65% and 42% concordance to BM, respectively. Our results show the potential utility of PB as a surrogate for BM for MDS patients, thus avoiding the need for repeated BM aspirates particularly in elderly patients and those with fibrotic or hypocellular marrows.
10.1182/blood-2012-12-471847
Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto-placental disease.
Science translational medicine
Whole-genome sequencing (WGS) of maternal plasma cell-free DNA (cfDNA) can potentially evaluate all 24 chromosomes to identify abnormalities of the placenta, fetus, or pregnant woman. Current bioinformatics algorithms typically only report on chromosomes 21, 18, 13, X, and Y; sequencing results from other chromosomes may be masked. We hypothesized that by systematically analyzing WGS data from all chromosomes, we could identify rare autosomal trisomies (RATs) to improve understanding of feto-placental biology. We analyzed two independent cohorts from clinical laboratories, both of which used a similar quality control parameter, normalized chromosome denominator quality. The entire data set included 89,817 samples. Samples flagged for analysis and classified as abnormal were 328 of 72,932 (0.45%) and 71 of 16,885 (0.42%) in cohorts 1 and 2, respectively. Clinical outcome data were available for 57 of 71 (80%) of abnormal cases in cohort 2. Visual analysis of WGS data demonstrated RATs, copy number variants, and extensive genome-wide imbalances. Trisomies 7, 15, 16, and 22 were the most frequently observed RATs in both cohorts. Cytogenetic or pregnancy outcome data were available in 52 of 60 (87%) of cases with RATs in cohort 2. Cases with RATs detected were associated with miscarriage, true fetal mosaicism, and confirmed or suspected uniparental disomy. Comparing the trisomic fraction with the fetal fraction allowed estimation of possible mosaicism. Analysis and reporting of aneuploidies in all chromosomes can clarify cases in which cfDNA findings on selected "target" chromosomes (21, 18, and 13) are discordant with the fetal karyotype and may identify pregnancies at risk of miscarriage and other complications.
10.1126/scitranslmed.aan1240
Global chromosome rearrangement induced by CRISPR-Cas9 reshapes the genome and transcriptome of human cells.
Nucleic acids research
Chromosome rearrangement plays important roles in development, carcinogenesis and evolution. However, its mechanism and subsequent effects are not fully understood. Large-scale chromosome rearrangement has been performed in the simple eukaryote, wine yeast, but the relative research in mammalian cells remains at the level of individual chromosome rearrangement due to technical limitations. In this study, we used CRISPR-Cas9 to target the highly repetitive human endogenous retrotransposons, LINE-1 and Alu, resulting in a large number of DNA double-strand breaks in the chromosomes. While this operation killed the majority of the cells, we eventually obtained live cell groups. Karyotype analysis and genome re-sequencing proved that we have achieved global chromosome rearrangement (GCR) in human cells. The copy number variations of the GCR genomes showed typical patterns observed in tumor genomes. The ATAC-seq and RNA-seq further revealed that the epigenetic and transcriptomic landscapes were deeply reshaped by GCR. Gene expressions related to p53 pathway, DNA repair, cell cycle and apoptosis were greatly altered to facilitate the cell survival. Our study provided a new application of CRISPR-Cas9 and a practical approach for GCR in complex mammalian genomes.
10.1093/nar/gkac153
Diagnosis and Therapy of Acute Myeloid Leukemia in the Era of Molecular Risk Stratification.
Annual review of medicine
The diagnosis and risk stratification of acute myeloid leukemia (AML) primarily rely on morphologic analysis and assessment of karyotype by chromosome banding analysis. For decades, standard AML induction therapy has utilized the combination of anthracyclines and cytarabine. Despite the use of postremission therapy, less than half of patients with AML will be cured of their disease. Allogeneic hematopoietic stem cell transplantation combines cytoreductive chemotherapy with adoptive immunotherapy and may cure patients who fail chemotherapy alone. Recent advances in next-generation sequencing have yielded important insights into the molecular landscape of AML with normal karyotype. Integrated prognostic models incorporating somatic mutation analyses may outperform prediction based on conventional clinical and cytogenetic factors alone. We review the evolution of risk profiling of AML from the cytogenetic to molecular era and describe the implications for AML diagnosis and postremission therapy.
10.1146/annurev-med-051914-021329