logo logo
Erythropoietin and IGF-1 signaling synchronize cell proliferation and maturation during erythropoiesis. Kadri Zahra,Lefevre Carine,Goupille Olivier,Penglong Tipparat,Granger-Locatelli Marine,Fucharoen Suthat,Maouche-Chretien Leila,Leboulch Philippe,Chretien Stany Genes & development Tight coordination of cell proliferation and differentiation is central to red blood cell formation. Erythropoietin controls the proliferation and survival of red blood cell precursors, while variations in GATA-1/FOG-1 complex composition and concentrations drive their maturation. However, clear evidence of cross-talk between molecular pathways is lacking. Here, we show that erythropoietin activates AKT, which phosphorylates GATA-1 at Ser310, thereby increasing GATA-1 affinity for FOG-1. In turn, FOG-1 displaces pRb/E2F-2 from GATA-1, ultimately releasing free, proproliferative E2F-2. Mice bearing a Gata-1(S310A) mutation suffer from fatal anemia when a compensatory pathway for E2F-2 production involving insulin-like growth factor-1 (IGF-1) signaling is simultaneously abolished. In the context of the GATA-1(V205G) mutation resulting in lethal anemia, we show that the Ser310 cannot be phosphorylated and that constitutive phosphorylation at this position restores partial erythroid differentiation. This study sheds light on the GATA-1 pathways that synchronize cell proliferation and differentiation for tissue homeostasis. 10.1101/gad.267633.115
Healing of induced tongue defects using erythropoietin hydrogel (an experimental study on rats). BMC oral health BACKGROUND:Tongue is complex muscular organ that may be affected by recurrent or chronic ulcerations and malignances that require effective treatment to enhance healing and tissue regeneration. So, this study aimed to evaluate the efficiency of erythropoietin (EPO) hydrogel as an anti-inflammatory and an inducer of neovascularization during healing of induced rats' tongue defects. METHODS:Thirty six rats were divided into three groups; Group I (negative control): tongues were left without ulceration and received no treatment, Group II (positive control): tongue defects were prepared on the tongues' dorsal surfaces, measuring (5 mm × 2 mm) using a tissue punch rotary drill for standardization, and left untreated, Group III (EPO group): tongue defects were prepared as in group II, then injected circumferentially around wound margins with a single high dose of EPO hydrogel of 5000 U/kg on the day of defect preparation. Animals were euthanized on seventh and fourteenth days after treatment, tongue specimens were collected, and paraffin blocks were prepared and processed for histological assessment by hematoxylin and eosin stain and immunohistochemical evaluation of anti-iNOS and anti-VEGF followed by histomorphometrical analysis and the relevant statistical tests. RESULTS:At both time points, the EPO treated group showed significantly enhanced tissue regeneration marked by the histologically better regenerated tissue with well developed, thick walled and well-organized blood vessels and significant reduction in defect depth compared to positive control group. EPO group also showed significant decrease in iNOS and significant increase in VEGF antibodies indicating its anti-inflammatory and neovascularization effects respectively. CONCLUSION:EPO treatment can significantly accelerate regeneration and filling of tongue defects by reducing tissue inflammation and enhancing neovascularization. Therefore, EPO could be a potential therapeutic strategy for accelerating healing of tongue ulcers. However, further investigations are required to optimize the dose and unravel any potential side effects before its clinical application. 10.1186/s12903-024-04161-5