P38 MAPK, NF-κB, and JAK-STAT3 Signaling Pathways Involved in Capecitabine-Induced Hand-Foot Syndrome via Interleukin 6 or Interleukin 8 Abnormal Expression.
Chemical research in toxicology
Hand-foot syndrome (HFS) is a major adverse reaction to capecitabine (CAP). The exact pathogenesis of this disease remains unclear. In this study, metabolomics combined with cell RNA sequencing was used to study the mechanisms of CAP-induced HFS. The murine model of HFS was constructed by intragastric administration of CAP or its metabolites. Quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assays were used to verify the mechanisms. Metabolomics showed the phosphatidylinositol signaling pathway and amino acid and fatty acid metabolism to be the major metabolic alterations related to the occurrence of HFS. Transcriptomics profiles further revealed that the cytokine-cytokine receptor interaction, IL17 signaling pathway, Toll-like receptor signaling pathway, arachidonic acid metabolism, MAPK signaling pathway, and JAK-STAT3 signaling pathway were the vital steps in skin toxicity induced by CAP or its metabolites. We also verified that the inflammation mechanisms were primarily mediated by the abnormal expression of interleukin (IL) 6 or IL8 and not exclusively by COX-2 overexpression. Finally, the P38 MAPK, NF-κB, and JAK-STAT3 signaling pathways, which mediate high levels of expression of IL6 or IL8, were identified as potential pathways underlying CAP-induced HFS.
10.1021/acs.chemrestox.1c00317
Use of omeprazole, the proton pump inhibitor, as a potential therapy for the capecitabine-induced hand-foot syndrome.
Hiromoto Shiori,Kawashiri Takehiro,Yamanaka Natsumi,Kobayashi Daisuke,Mine Keisuke,Inoue Mizuki,Uchida Mayako,Shimazoe Takao
Scientific reports
Hand-foot syndrome (HFS), also known as palmar-plantar erythrodysesthesia (PPE), is a major side effect of capecitabine. Although the pathogenesis of HFS remains unknown, some studies suggested a potential involvement of inflammation in its pathogenesis. Proton pump inhibitors (PPIs) have been reported to have anti-inflammatory effects. In this study, we investigated the ameliorative effects of omeprazole, a PPI on capecitabine-related HFS in mice model, and a real-world database. Repeated administration of capecitabine (200 mg/kg, p.o., five times a week for 3 weeks) increased fluid content, redness, and tumor necrosis factor (TNF)-α substance of the mice hind paw. Co-administration of omeprazole (20 mg/kg, p.o., at the same schedule) significantly inhibited these changes induced by capecitabine. Moreover, based on the clinical database analysis of the Food and Drug Administration Adverse Event Reporting System, the group that has used any PPIs had a lower reporting rate of capecitabine-related PPE than the group that has not used any PPIs. (6.25% vs. 8.31%, p < 0.0001, reporting odds ratio (ROR) 0.74, 95% confidence interval (CI) 0.65-0.83). Our results suggest that omeprazole may be a potential prophylactic agent for capecitabine-induced HFS.
10.1038/s41598-021-88460-9
Capecitabine induces hand-foot syndrome through elevated thymidine phosphorylase-mediated locoregional toxicity and GSDME-driven pyroptosis that can be relieved by tipiracil.
British journal of cancer
BACKGROUND:Hand-foot syndrome (HFS) is a serious dose-limiting cutaneous toxicity of capecitabine-containing chemotherapy, leading to a deteriorated quality of life and negative impacts on chemotherapy treatment. The symptoms of HFS have been widely reported, but the precise molecular and cellular mechanisms remain unknown. The metabolic enzyme of capecitabine, thymidine phosphorylase (TP) may be related to HFS. Here, we investigated whether TP contributes to the HFS and the molecular basis of cellular toxicity of capecitabine. METHODS:TP-/- mice were generated to assess the relevance of TP and HFS. Cellular toxicity and signalling mechanisms were assessed by in vitro and in vivo experiments. RESULTS:TP-/- significantly reduced capecitabine-induced HFS, indicating that the activity of TP plays a critical role in the development of HFS. Further investigations into the cellular mechanisms revealed that the cytotoxicity of the active metabolite of capecitabine, 5-DFUR, was attributed to the cleavage of GSDME-mediated pyroptosis. Finally, we demonstrated that capecitabine-induced HFS could be reversed by local application of the TP inhibitor tipiracil. CONCLUSION:Our findings reveal that the presence of elevated TP expression in the palm and sole aggravates local cell cytotoxicity, further explaining the molecular basis underlying 5-DFUR-induced cellular toxicity and providing a promising approach to the therapeutic management of HFS.
10.1038/s41416-022-02039-3
Thymidine phosphorylase as a molecular target for quercetin-incorporated collagen matrix in the prevention of hand-foot syndrome induced by capecitabine in rats.
Canadian journal of physiology and pharmacology
Hand-foot syndrome (HFS) is a common adverse effect of capecitabine affecting the quality of life of cancer patients. To enhance the tolerability of capecitabine, this work evaluated the incorporation of quercetin into topical collagen matrix formula to target thymidine phosphorylase enzyme, oxidative stress, and apoptosis underlying HFS. Forty Sprague Dawley rats were allocated to four equal groups. The control group received distilled water orally. HFS was induced by oral capecitabine (200 mg/kg/day) for 21 days. The untreated HFS group received no treatment. In the treated groups, topical collagen and quercetin-incorporated collagen matrix formula were administered concomitantly with the HFS induction protocol. Treatment with quercetin-incorporated collagen matrix showed a significant decrease in thymidine phosphorylase level compared with the untreated and collagen-treated groups. Treatment with quercetin-incorporated collagen matrix showed a significant decrease in malondialdehyde and caspase-3 levels, and a significant increase in the total antioxidant capacity of the skin and B cell lymphoma/leukemia 2 levels compared with the untreated group. Additionally, a significant improvement in the gross picture and histopathological score of HFS was observed. In conclusion, the quercetin-incorporated collagen matrix is a promising formula for the prevention of HFS, due to the targeted effect on thymidine phosphorylase and subsequent antioxidant and antiapoptotic effects.
10.1139/cjpp-2022-0439
The contribution of keratinocytes in capecitabine-stimulated hand-foot-syndrome.
Chen Min,Chen Jian,Peng Xueming,Xu Zhifei,Shao Jinjin,Zhu Yuanrun,Li Guanqun,Zhu Hong,Yang Bo,Luo Peihua,He Qiaojun
Environmental toxicology and pharmacology
Capecitabine, as the first-line treatment for multiple tumor types, has a serious drawback of hand-foot-syndrome (HFS) that limits its clinical use. However, the pathophysiology and mechanism of capecitabine-induced HFS is rarely known. Here we built the experimental mouse model of HFS induced by capecitabine at first and it was shown that 3 of 6 mice appeared HFS in the 5th day and 5 mice occurred HFS in the 30th day. The corneous layer was reduced in capecitabine-induced HFS in vivo. Moreover, we found that capecitabine could significantly induce keratinocytes cells death in vitro through activated apoptosis pathway and decreased mitochondrial membrane potential. In conclusion, these results suggested that HFS of capecitabine may be developed from reduction of corneous layer through stimulation of intracellular mitochondrial dysfunction following activation of caspase-dependent apoptosis pathway.
10.1016/j.etap.2016.12.001
Capecitabine and hand-foot syndrome.
Saif Muhammad Wasif
Expert opinion on drug safety
Hand-foot syndrome (HFS), or palmar-plantar erythrodysesthesia, is a common side effect in patients taking long-term 5-fluorouracil treatment and is the most frequently reported side effect of oral capecitabine therapy (≥ 50% of patients). Although the pathogenesis of HFS is not fully understood, it may be due to damaged deep capillaries in the soles of the feet and palms of the hands, leading to a COX inflammatory-type reaction, or related to enzymes involved in the metabolism of capecitabine, namely, thymidine phosphorylase and dihydropyrimidine dehydrogenase. Ethnic variations in the clinical manifestation of HFS warrant further attention, and an alternative system for grading HFS in non-white patients has been proposed. In addition to treatment interruption and dose reduction, supportive treatments can help alleviate symptoms. Because capecitabine is an oral therapy administered at home, it is crucial that patients understand the importance of complying with treatment, be aware of the possibility of HFS, and inform the doctor or nurse immediately if symptoms of HFS develop. Several cases of HFS are presented.
10.1517/14740338.2011.546342