Nutritional Supplements to Support Resistance Exercise in Countering the Sarcopenia of Aging.
Nutrients
Skeletal muscle plays an indispensable role in metabolic health and physical function. A decrease in muscle mass and function with advancing age exacerbates the likelihood of mobility impairments, disease development, and early mortality. Therefore, the development of non-pharmacological interventions to counteract sarcopenia warrant significant attention. Currently, resistance training provides the most effective, low cost means by which to prevent sarcopenia progression and improve multiple aspects of overall health. Importantly, the impact of resistance training on skeletal muscle mass may be augmented by specific dietary components (i.e., protein), feeding strategies (i.e., timing, per-meal doses of specific macronutrients) and nutritional supplements (e.g., creatine, vitamin-D, omega-3 polyunsaturated fatty acids etc.). The purpose of this review is to provide an up-to-date, evidence-based account of nutritional strategies to enhance resistance training-induced adaptations in an attempt to combat age-related muscle mass loss. In addition, we provide insight on how to incorporate the aforementioned nutritional strategies that may support the growth or maintenance of skeletal muscle and subsequently extend the healthspan of older individuals.
10.3390/nu12072057
The Favorable Effects of a High-Intensity Resistance Training on Sarcopenia in Older Community-Dwelling Men with Osteosarcopenia: The Randomized Controlled FrOST Study.
Clinical interventions in aging
PURPOSE:Sarcopenia, the loss of muscle mass combined with the loss of muscle function, has become a public health issue. There is an urgent need for interventions. The study aimed to determine the effect of high-intensity resistance training (HI-RT), a time- and cost-efficient training modality, on sarcopenia in osteosarcopenic (OS) older men. METHODS:Forty-three community-dwelling men aged ≥72 years from Northern Bavaria, Germany, with OS were randomly assigned to either an active HI-RT group (HI-RT) or an inactive control group (CG). Both received dietary protein (up to 1.5 g/kg/day in HI-RT and 1.2 g/kg/day in CG) and Vitamin-D (up to 800 IE/d) supplements. The HI-RT was applied as a consistently supervised single-set training on resistance exercise machines using intensifying strategies, with two training sessions/week, structured into three phases (ranging from 8 to 12 weeks) totaling 28 weeks. The primary study endpoint was the Sarcopenia Z-score; secondary endpoints were changes in the underlying physiological parameters, skeletal muscle mass index (SMI), handgrip-strength and gait velocity. RESULTS:The results show a significant effect of the exercise intervention on the sarcopenia Z-score in the HI-RT (p<0.001) and a significant worsening of it in the CG (p=0.012) in the intention-to-treat analysis, as well as a significant intergroup change (p<0.001). Analysis upon the underlying parameters showed a significant increase of skeletal muscle mass index (SMI) in the HI-RT group (p<0.001) and a significant intergroup difference of SMI (p<0.001) and handgrip strength (p<0.001). There were no adverse effects related to dietary supplementation or training. CONCLUSION:The results clearly confirm the favorable effects of HI-RT on sarcopenia. We conclude that HI-RT is a feasible, highly efficient and safe training modality for combating sarcopenia, also in the elderly.
10.2147/CIA.S225618
Sarcopenia in systemic sclerosis: the impact of nutritional, clinical, and laboratory features.
Corallo Claudio,Fioravanti Antonella,Tenti Sara,Pecetti Gianluca,Nuti Ranuccio,Giordano Nicola
Rheumatology international
We evaluated the presence of sarcopenia in a population of systemic sclerosis (SSc) patients, with respect to nutritional, clinical, and laboratory features. A total of 62 patients who met the ACR/EULAR 2013 classification criteria were enrolled. Sarcopenia was defined according to the Relative Skeletal Mass Index (RSMI) and hand grip strength (HGS). Body composition was assessed with the calculation of the Body Mass Index (BMI), lean body mass (LBM) and fat mass (FM). Malnutrition was evaluated according to the ESPEN criteria. Clinical evaluation included nailfold capillaroscopy and skin evaluation by modified Rodnan Skin Score (mRSS), pulmonary function tests (PFT) with diffusing capacity for carbon monoxide adjusted for hemoglobin (DLCO), high-resolution computed tomography (HR-CT) of the lungs, echocardiography and high-resolution manometry (HRM) for esophageal involvement. Laboratory evaluation included erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), hemoglobin, creatinine, creatine kinase (CK), transaminases, lipid profile, glycemia, albumin, and vitamin-D. Antinuclear antibodies (ANA) and extractable nuclear antigens (ENA) were also assessed. Considering RSMI, the prevalence of sarcopenia is 42%. In this case, age, malnutrition, disease duration, mRSS, capillaroscopy score, esophageal involvement, ESR, and ANA titer are higher in the sarcopenic group, while DLCO and LBM are lower. Considering HGS, the prevalence of sarcopenia is 55%. Age, disease duration, malnutrition, FM, mRSS, capillaroscopy score, esophageal involvement, ESR, and ENA positivity are higher in the sarcopenic group, while DLCO is lower. By using both RSMI and HGS to assess sarcopenia in SSc, the results of this study demonstrated that this condition correlates with different nutritional, clinical, and biochemical parameters associated with the worsening of the disease.
10.1007/s00296-019-04401-w
Effects of 16 months of high intensity resistance training on thigh muscle fat infiltration in elderly men with osteosarcopenia.
GeroScience
Osteosarcopenia is characterized by a progressive decline in muscle function and bone strength and associated with muscle fat accumulation. This study aimed to determine the effect of long-term high intensity resistance training (HIRT) on thigh muscle fat infiltration in older men with osteosarcopenia. Forty-three community-dwelling men (72 years and older) were randomly assigned to either an exercise group (EG, n = 21) or an inactive control group (CG, n = 22). EG participants performed a supervised single-set exercise training with high effort two times per week. Participants of both groups were individually provided with dietary protein to reach a cumulative intake of 1.5-1.6 g/kg/day or 1.2-1.3 g/kg/day (EG/CG), respectively, and Up to 10,000 IE/week of Vitamin-D were supplemented in participants with 25 OH Vitamin-D 3 levels below 100 nmol/l. Magnetic resonance (MR) imaging was performed to determine muscle and adipose tissue volume and fat fraction of the thigh. At baseline, there were no significant differences between the two groups. After 16 month,, there were significant training effects of 15% (p = 0.004) on intermuscular adipose tissue (IMAT) volume, which increased in the CG (p = 0.012) and was stable in the EG. In parallel, fat fraction within the deep fascia of the thigh (Baseline, EG: 18.2 vs CG: 15.5, p = 0.16) significantly differed between the groups (Changes, EG: 0.77% vs. CG: 7.7%, p = 0.009). The study confirms the role of fat infiltration of the muscles as an advanced imaging marker in osteosarcopenia and the favorable effects of HIRT on adipose tissue volume of the thigh, in men with osteosarcopenia.
10.1007/s11357-020-00316-8
Ratio of Dietary n-6/n-3 Polyunsaturated Fatty Acids Independently Related to Muscle Mass Decline in Hemodialysis Patients.
Wong Te-Chih,Chen Yu-Tong,Wu Pei-Yu,Chen Tzen-Wen,Chen Hsi-Hsien,Chen Tso-Hsiao,Yang Shwu-Huey
PloS one
BACKGROUND:n-3 polyunsaturated fatty acids (PUFAs) might be useful nutritional strategy for treating patients with sarcopenia. We evaluated the effect of the intake of dietary n-3 PUFAs on the skeletal muscle mass (SMM), appendicular skeletal muscle mass (ASM), and its determinants in patients receiving standard hemodialysis (HD) treatment for the management of end stage renal disease. METHODS:In this cross-sectional study, data of 111 HD patients were analyzed. Anthropometric and bioelectrical impedance measurements used to estimate the muscle mass were performed the day of dialysis immediately after the dialysis session. Routine laboratory and 3-day dietary data were also collected. The cutoff value of adequate intake (AI) for both n-3 PUFAs and alpha-linolenic acid (ALA) was 1.6 g/day and 1.1 g/day for men and women, respectively. RESULTS:The mean age, mean dietary n-3 PUFAs intake, ALA intake, ratio of n-6/n-3 PUFAs intake, SMM, and ASM of patients were 61.4 ± 10.4 years, 2.0 ± 1.3 g/day, 1.5 ± 1.0 g/day, 9.5 ± 6.7 g/day, 23.9 ± 5.5 kg, and 17.5 ± 4.5 kg, respectively. A higher SMM and ASM significantly observed in patients who achieved an AI of n-3 PUFAs. Similar trends appeared to be observed among those patients who achieved the AI of ALA, but the difference was not significantly, except for ASM (P = 0.047). No relevant differences in demographics, laboratory and nutritional parameters were observed, regardless of whether the patients achieved an AI of n-3 PUFAs. Multivariate analysis showed that the BMI and equilibrated Kt/V were independent determinants of the muscle mass. Moreover, the ratio of n-6/n-3 PUFAs was an independent risk determinant of reduced ASM in HD patients. CONCLUSION:Patients with an AI of n-3 PUFAs had better total-body SMM and ASM. A higher dietary ratio of n-6/n-3 PUFAs seemed to be associated with a reduced muscle mass in HD patients.
10.1371/journal.pone.0140402
Uremic Sarcopenia and Its Possible Nutritional Approach.
Noce Annalisa,Marrone Giulia,Ottaviani Eleonora,Guerriero Cristina,Di Daniele Francesca,Pietroboni Zaitseva Anna,Di Daniele Nicola
Nutrients
Uremic sarcopenia is a frequent condition present in chronic kidney disease (CKD) patients and is characterized by reduced muscle mass, muscle strength and physical performance. Uremic sarcopenia is related to an increased risk of hospitalization and all-causes mortality. This pathological condition is caused not only by advanced age but also by others factors typical of CKD patients such as metabolic acidosis, hemodialysis therapy, low-grade inflammatory status and inadequate protein-energy intake. Currently, treatments available to ameliorate uremic sarcopenia include nutritional therapy (oral nutritional supplement, inter/intradialytic parenteral nutrition, enteral nutrition, high protein and fiber diet and percutaneous endoscopic gastrectomy) and a personalized program of physical activity. The aim of this review is to analyze the possible benefits induced by nutritional therapy alone or in combination with a personalized program of physical activity, on onset and/or progression of uremic sarcopenia.
10.3390/nu13010147