Adipocytes promote interleukin-18 binding to its receptors during abdominal aortic aneurysm formation in mice.
European heart journal
AIMS:Obesity is a risk factor of abdominal aortic aneurysm (AAA). Inflammatory cytokine interleukin-18 (IL18) has two receptors: IL18 receptor (IL18r) and Na-Cl co-transporter (NCC). In human and mouse AAA lesions, IL18 colocalizes to its receptors at regions rich in adipocytes, suggesting a role of adipocytes in promoting IL18 actions in AAA development. METHODS AND RESULTS:We localized both IL18r and NCC in human and mouse AAA lesions. Murine AAA development required both receptors. In mouse AAA lesions, IL18 binding to these receptors increased at regions enriched in adipocytes or adjacent to perivascular adipose tissue. 3T3-L1 adipocytes enhanced IL18 binding to macrophages, aortic smooth muscle cells (SMCs), and endothelial cells by inducing the expression of both IL18 receptors on these cells. Adipocytes also enhanced IL18r and IL18 expression from T cells and macrophages, AAA-pertinent protease expression from macrophages, and SMC apoptosis. Perivascular implantation of adipose tissue from either diet-induced obese mice or lean mice but not that from leptin-deficient ob/ob mice exacerbated AAA development in recipient mice. Further experiments established an essential role of adipocyte leptin and fatty acid-binding protein 4 (FABP4) in promoting IL18 binding to macrophages and possibly other inflammatory and vascular cells by inducing their expression of IL18, IL18r, and NCC. CONCLUSION:Interleukin-18 uses both IL18r and NCC to promote AAA formation. Lesion adipocyte and perivascular adipose tissue contribute to AAA pathogenesis by releasing leptin and FABP4 that induce IL18, IL18r, and NCC expression and promote IL18 actions.
10.1093/eurheartj/ehz856
Empagliflozin ameliorates vascular calcification in diabetic mice through inhibiting Bhlhe40-dependent NLRP3 inflammasome activation.
Acta pharmacologica Sinica
Type 2 diabetes mellitus (T2DM) patients exhibit greater susceptibility to vascular calcification (VC), which has a higher risk of death and disability. However, there is no specific drug for VC therapy. NLRP3 inflammasome activation as a hallmark event of medial calcification leads to arterial stiffness, causing vasoconstrictive dysfunction in T2DM. Empagliflozin (EMPA), a sodium-glucose co-transporter 2 inhibitor (SGLT2i), restrains hyperglycemia with definite cardiovascular benefits. Given the anti-inflammatory activity of EMPA, herein we investigated whether EMPA protected against VC in the aorta of T2DM mice by inhibiting NLRP3 inflammasome activation. Since db/db mice receiving a normal diet developed VC at the age of about 20 weeks, we administered EMPA (5, 10, 20 mg·kg·d, i.g) to 8 week-old db/db mice for 12 weeks. We showed that EMPA intervention dose-dependently ameliorated the calcium deposition, accompanied by reduced expression of RUNX2 and BMP2 proteins in the aortas. We found that EMPA (10 mg·kg·d for 6 weeks) also protected against VC in vitamin D3-overloaded mice, suggesting the protective effects independent of metabolism. We showed that EMPA (10 mg·kg·d) inhibited the abnormal activation of NLRP3 inflammasome in aortic smooth muscle layer of db/db mice. Knockout (KO) of NLRP3 significantly alleviated VC in STZ-induced diabetic mice. The protective effects of EMPA were verified in high glucose (HG)-treated mouse aortic smooth muscle cells (MOVASs). In HG-treated NLRP3 KO MOVASs, EMPA (1 μM) did not cause further improvement. Bioinformatics and Western blot analysis revealed that EMPA significantly increased the expression levels of basic helix-loop-helix family transcription factor e40 (Bhlhe40) in HG-treated MOVASs, which served as a negative transcription factor directly binding to the promotor of Nlrp3. We conclude that EMPA ameliorates VC by inhibiting Bhlhe40-dpendent NLRP3 inflammasome activation. These results might provide potential significance for EMPA in VC therapy of T2DM patients.
10.1038/s41401-023-01217-0