Ion channels and channelopathies in glomeruli.
Physiological reviews
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
10.1152/physrev.00013.2022
Mechanistic Insights Into Redox Damage of the Podocyte in Hypertension.
Hypertension (Dallas, Tex. : 1979)
Podocytes are specialized cells within the glomerular filtration barrier, which are crucial for maintaining glomerular structural integrity and convective ultrafiltration. Podocytes exhibit a unique arborized morphology with foot processes interfacing by slit diaphragms, ladder-like, multimolecular sieves, which provide size and charge selectivity for ultrafiltration and transmembrane signaling. Podocyte dysfunction, resulting from oxidative stress, dysregulated prosurvival signaling, or structural damage, can drive the development of proteinuria and glomerulosclerosis in hypertensive nephropathy. Functionally, podocyte injury leads to actin cytoskeleton rearrangements, foot process effacement, dysregulated slit diaphragm protein expression, and impaired ultrafiltration. Notably, the renin-angiotensin system plays a pivotal role in podocyte function, with beneficial AT2R (angiotensin receptor 2)-mediated nitric oxide (NO) signaling to counteract AT1R (angiotensin receptor 1)-driven calcium (Ca) influx and oxidative stress. Disruption of this balance contributes significantly to podocyte dysfunction and drives albuminuria, a marker of kidney damage and overall disease progression. Oxidative stress can also lead to sustained ion channel-mediated Ca influx and precipitate cytoskeletal disorganization. The complex interplay between GPCR (G-protein coupled receptor) signaling, ion channel activation, and redox injury pathways underscores the need for additional research aimed at identifying targeted therapies to protect podocytes and preserve glomerular function. Earlier detection of albuminuria and podocyte injury through routine noninvasive diagnostics will also be critical in populations at the highest risk for the development of hypertensive kidney disease. In this review, we highlight the established mechanisms of oxidative stress-mediated podocyte damage in proteinuric kidney diseases, with an emphasis on a hypertensive renal injury. We will also consider emerging therapies that have the potential to selectively protect podocytes from redox-related injury.
10.1161/HYPERTENSIONAHA.124.22068
Role of biophysics and mechanobiology in podocyte physiology.
Nature reviews. Nephrology
Podocytes form the backbone of the glomerular filtration barrier and are exposed to various mechanical forces throughout the lifetime of an individual. The highly dynamic biomechanical environment of the glomerular capillaries greatly influences the cell biology of podocytes and their pathophysiology. Throughout the past two decades, a holistic picture of podocyte cell biology has emerged, highlighting mechanobiological signalling pathways, cytoskeletal dynamics and cellular adhesion as key determinants of biomechanical resilience in podocytes. This biomechanical resilience is essential for the physiological function of podocytes, including the formation and maintenance of the glomerular filtration barrier. Podocytes integrate diverse biomechanical stimuli from their environment and adapt their biophysical properties accordingly. However, perturbations in biomechanical cues or the underlying podocyte mechanobiology can lead to glomerular dysfunction with severe clinical consequences, including proteinuria and glomerulosclerosis. As our mechanistic understanding of podocyte mechanobiology and its role in the pathogenesis of glomerular disease increases, new targets for podocyte-specific therapeutics will emerge. Treating glomerular diseases by targeting podocyte mechanobiology might improve therapeutic precision and efficacy, with potential to reduce the burden of chronic kidney disease on individuals and health-care systems alike.
10.1038/s41581-024-00815-3
Targeted therapy in glomerular diseases.
Journal of the Formosan Medical Association = Taiwan yi zhi
Targeted therapy has emerged as a more precise approach to treat glomerular diseases, focusing on specific molecular or cellular processes that contribute to disease development or progression. This approach complements or replaces traditional immunosuppressive therapy, optimizes supportive care, and provides a more personalized treatment strategy. In this review, we summarize the evolving understanding of pathogenic mechanisms in immune-mediated glomerular diseases and the developing targeted therapies based on these mechanisms. We begin by discussing pan-B-cell depletion, anti-CD20 rituximab, and targeting B-cell survival signaling through the BAFF/APRIL pathway. We also exam specific plasma cell depletion with anti-CD38 antibody. We then shift our focus to complement activation in glomerular diseases, which is involved in antibody-mediated glomerular diseases, such as IgA nephropathy, membranous nephropathy, ANCA-associated vasculitis, and lupus nephritis. Non-antibody-mediated complement activation occurs in glomerular diseases, including C3 glomerulopathy, complement-mediated atypical hemolytic uremic syndrome, and focal segmental glomerulosclerosis. We discuss specific inhibition of terminal, lectin, and alternative pathways in different glomerular diseases. Finally, we summarize current clinical trials targeting the final pathways of various glomerular diseases, including kidney fibrosis. We conclude that targeted therapy based on individualized pathogenesis should be the future of treating glomerular diseases.
10.1016/j.jfma.2023.06.020
[Towards understanding chronic kidney disease].
Medecine sciences : M/S
Chronic kidney disease (CKD) is a global health problem affecting almost 15% of the population worldwide. After renal injury, there is a nephron loss and remaining nephrons ensure the glomerular filtration rate (GFR) with compensatory hyperplasia and hypertrophy: This is called the nephron reduction. After nephron reduction, renal function will gradually decline and lead to chronic end-stage renal failure. Whatever the initial cause of the renal injury, recent data suggest there are common molecular mechanisms at the origin of CKD progression. Moreover, the renal lesions are very reproducible with glomerulosclerosis, tubular atrophy and partial epithelio-mesenchymal transition, interstitial fibrosis and vascular abnormalities. The physiopathology of CKD progression is unclear but some hypotheses have been described: i) the nephron "overwork", supported by recent works showing that the nephron reduction leads to hyperfiltration by the remaining nephrons and the stability of the GFR; ii) the "podocyte adaptation" theory, reflected by the importance of the podocytopathy in CKD progression and the crucial role of residual proteinuria in renal lesion development; iii) the activation of EGFR signaling pathways in surgical nephron reduction model and its involvement in CKD progression. Finally, CKD progression remains poorly understood and further studies will be necessary to discover new CKD molecular pathways and to develop new therapeutic insight in CKD management.
10.1051/medsci/2023033
The Physiopathologic Roles of Calcium Signaling in Podocytes.
Frontiers in bioscience (Landmark edition)
Calcium (Ca2+) plays a critical role in podocyte function. The Ca2+-sensitive receptors on the cell surface can sense changes in Ca2+ concentration, and Ca2+ flow into podocytes, after activation of Ca2+ channels (such as transient receptor potential canonical (TRPC) channels and N-type calcium channels) by different stimuli. In addition, the type 2 ryanodine receptor (RyR2) and the voltage-dependent anion channel 1 (VDAC1) on mitochondrial store-operated calcium channels (SOCs) on the endoplasmic reticulum maintain the Ca2+ homeostasis of the organelle. Ca2+ signaling is transmitted through multiple downstream signaling pathways and participates in the morphogenesis, structural maintenance, and survival of podocytes. When Ca2+ is dysregulated, it leads to the occurrence and progression of various diseases, such as focal segmental glomerulosclerosis, diabetic kidney disease, lupus nephritis, transplant glomerulopathy, and hypertensive renal injury. Ca2+ signaling is a promising therapeutic target for podocyte-related diseases. This review first summarizes the role of Ca2+ sensing, Ca2+ channels, and different Ca2+-signaling pathways in the biological functions of podocytes, then, explores the status of Ca2+ signaling in different podocyte-related diseases and its advances as a therapeutic target.
10.31083/j.fbl2810240
Crosstalk between glomeruli and tubules.
Nature reviews. Nephrology
Models of kidney injury have classically concentrated on glomeruli as the primary site of injury leading to glomerulosclerosis or on tubules as the primary site of injury leading to tubulointerstitial fibrosis. However, current evidence on the mechanisms of progression of chronic kidney disease indicates that a complex interplay between glomeruli and tubules underlies progressive kidney injury. Primary glomerular injury can clearly lead to subsequent tubule injury. For example, damage to the glomerular filtration barrier can expose tubular cells to serum proteins, including complement and cytokines, that would not be present in physiological conditions and can promote the development of tubulointerstitial fibrosis and progressive decline in kidney function. In addition, although less well-studied, increasing evidence suggests that tubule injury, whether primary or secondary, can also promote glomerular damage. This feedback from the tubule to the glomerulus might be mediated by changes in the reabsorptive capacity of the tubule, which can affect the glomerular filtration rate, or by mediators released by injured proximal tubular cells that can induce damage in both podocytes and parietal epithelial cells. Examining the crosstalk between the various compartments of the kidney is important for understanding the mechanisms underlying kidney pathology and identifying potential therapeutic interventions.
10.1038/s41581-024-00907-0