logo logo
Melatonin-Derived Carbon Dots with Free Radical Scavenging Property for Effective Periodontitis Treatment via the Nrf2/HO-1 Pathway. ACS nano Periodontitis is a chronic inflammatory disease closely associated with reactive oxygen species (ROS) involvement. Eliminating ROS to control the periodontal microenvironment and alleviate the inflammatory response could potentially serve as an efficacious therapy for periodontitis. Melatonin (MT), renowned for its potent antioxidant and anti-inflammatory characteristics, is frequently employed as an ROS scavenger in inflammatory diseases. However, the therapeutic efficacy of MT remains unsatisfactory due to the low water solubility and poor bioavailability. Carbon dots have emerged as a promising and innovative nanomaterial with facile synthesis, environmental friendliness, and low cost. In this study, melatonin-derived carbon dots (MT-CDs) were successfully synthesized via the hydrothermal method. The MT-CDs have good water solubility and biocompatibility and feature excellent ROS-scavenging capacity without additional modification. The experiments proved that MT-CDs efficiently regulated intracellular ROS, which maintained mitochondrial homeostasis and suppressed the production of inflammatory mediators. Furthermore, findings from the mouse model of periodontitis indicated that MT-CDs significantly inhibited the deterioration of alveolar bone and reduced osteoclast activation and inflammation, thereby contributing to the regeneration of damaged tissue. In terms of the mechanism, MT-CDs may scavenge ROS, thereby preventing cellular damage and the production of inflammatory factors by regulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. The findings will offer a vital understanding of the advancement of secure and effective ROS-scavenging platforms for more biomedical applications. 10.1021/acsnano.3c12580
[Effects of cerium oxide nanoenzyme-gelatin methacrylate anhydride hydrogel in the repair of infected full-thickness skin defect wounds in mice]. Zhonghua shao shang yu chuang mian xiu fu za zhi To investigate the effects of cerium oxide nanoenzyme-gelatin methacrylate anhydride (GelMA) hydrogel (hereinafter referred to as composite hydrogel) in the repair of infected full-thickness skin defect wounds in mice. This study was an experimental study. Cerium oxide nanoenzyme with a particle size of (116±9) nm was prepared by hydrothermal method, and GelMA hydrogel with porous network structure and good gelling performance was also prepared. The 25 μg/mL cerium oxide nanoenzyme which could significantly promote the proliferation of human skin fibroblasts and had high superoxide dismutase activity was screened out. It was added to GelMA hydrogel to prepare composite hydrogel. The percentage of cerium oxide nanoenzyme released from the composite hydrogel was calculated after immersing it in phosphate buffer solution (PBS) for 3 and 7 d. The red blood cell suspension of mice was divided into PBS group, Triton X-100 group, cerium oxide nanoenzyme group, GelMA hydrogel group, and composite hydrogel group, which were treated with corresponding solution. The hemolysis of red blood cells was detected by microplate reader after 1 h of treatment. The bacterial concentrations of methicillin-resistant (MRSA) and were determined after being cultured with PBS, cerium oxide nanoenzyme, GelMA hydrogel, and composite hydrogel for 2 h. The sample size in all above experiments was 3. Twenty-four 8-week-old male BALB/c mice were taken, and a full-thickness skin defect wound was prepared in the symmetrical position on the back and infected with MRSA. The mice were divided into control group without any drug intervention, and cerium oxide nanoenzyme group, GelMA hydrogel group, and composite hydrogel group applied with corresponding solution, with 6 mice in each group. The wound healing was observed on 3, 7, and 14 d after injury, and the remaining wound areas on 3 and 7 d after injury were measured (the sample size was 5). The concentration of MRSA in the wound exudation of mice on 3 d after injury was measured (the sample size was 3), and the blood flow perfusion in the wound of mice on 5 d after injury was observed using a laser speckle flow imaging system (the sample size was 6). On 14 d after injury, the wound tissue of mice was collected for hematoxylin-eosin staining to observe the newly formed epithelium and for Masson staining to observe the collagen situation (the sample size was both 3). After immersion for 3 and 7 d, the release percentages of cerium oxide nanoenzyme in the composite hydrogel were about 39% and 75%, respectively. After 1 h of treatment, compared with that in Triton X-100 group, the hemolysis of red blood cells in PBS group, GelMA hydrogel group, cerium oxide nanoenzyme group, and composite hydrogel group was significantly decreased (<0.05). Compared with that cultured with PBS, the concentrations of MRSA and cultured with cerium oxide nanoenzyme, GelMA hydrogel, and composite hydrogel for 2 h were significantly decreased (<0.05). The wounds of mice in the four groups were gradually healed from 3 to 14 d after injury, and the wounds of mice in composite hydrogel group were all healed on 14 d after injury. On 3 and 7 d after injury, the remaining wound areas of mice in composite hydrogel group were (29±3) and (13±5) mm, respectively, which were significantly smaller than (56±12) and (46±10) mm in control group and (51±7) and (38±8) mm in cerium oxide nanoenzyme group (with values all <0.05), but was similar to (41±5) and (24±9) mm in GelMA hydrogel group (with values both >0.05). On 3 d after injury, the concentration of MRSA on the wound of mice in composite hydrogel group was significantly lower than that in control group, cerium oxide nanoenzyme group, and GelMA hydrogel group, respectively (with values all <0.05). On 5 d after injury, the volume of blood perfusion in the wound of mice in composite hydrogel group was significantly higher than that in control group, cerium oxide nanoenzyme group, and GelMA hydrogel group, respectively (<0.05). On 14 d after injury, the wound of mice in composite hydrogel group basically completed epithelization, and the epithelization was significantly better than that in the other three groups. Compared with that in the other three groups, the content of collagen in the wound of mice in composite hydrogel group was significantly increased, and the arrangement was also more orderly. The composite hydrogel has good biocompatibility and antibacterial effect and . It can continuously sustained release cerium oxide nanoenzyme, improve wound blood perfusion in the early stage, and promote wound re-epithelialization and collagen synthesis, therefore promoting the healing of infected full-thickness skin defect wounds in mice. 10.3760/cma.j.cn501225-20231120-00201