logo logo
Quantitative fluorescent detection of tetracycline in animal-derived foods using quantum dots. Applied microbiology and biotechnology Tetracycline (Tc) antibiotics, a class of synthetically produced broad-spectrum antimicrobial drugs, have been widely used in animal husbandry, leading to their widespread presence in animal-derived foods. However, misuse, overuse, and non-compliance with withdrawal periods in animal farming have resulted in excessive Tc residues in these foods, which can cause various adverse reactions in humans, induce bacterial resistance, and pose a significant threat to public health. Consequently, the detection of Tc antibiotic residues in animal-derived food has become a critical issue. This study aims to establish a novel method for quantifying Tc residues in animal-derived food using quantum dots (QDs) fluorescence immunoassay (FLISA). The developed method was optimized to achieve a detection limit of 0.69 ng/mL and a quantitative detection range of 1.30 ~ 59.22 ng/mL. The applicability of the method was demonstrated by successfully determining Tc residues in pork, chicken, fish, milk, eggs, and honey samples spiked with Tc standard solutions, yielding recoveries ranging from 94.01% to 110.19% and relative standard deviations between 1.10% and 11.39%. The significance of this study lies in its potential to provide a rapid and reliable approach for monitoring Tc residues in animal-derived food products, thereby contributing to the enhancement of food safety monitoring practices. KEY POINTS: • Screen out tetracycline-specific blocking monoclonal antibodies • The quantitative detection has high specificity and sensitivity • This method can be a useful tool for laboratories or testing facilities. 10.1007/s00253-024-13253-9
Quantum dots (QDs) attached magnetic beads (MBs) for on-chip efficient capture and detection of bacteria in ready-to-eat (RTE) foods. Talanta In this study, we established a versatile and simple magnetic-assisted microfluidic method for fast bacterial detection. Quantum dots (QDs) were loaded onto magnetic beads (MBs) to construct performance enhanced on-chip capture of bacteria. Escherichia coli (E. coli), as a model bacterium was studied. CdSe QDs were deposited onto the surface of FeO MBs through layer-by-layer self-assembly to enhance the loading of antibodies (Abs). MBs functionalized with anti-E. coli antibody molecules in a micropillar-based microfluidic chip were utilized to capture E. coli, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used for characterization of captured bacteria. This method was found capable of specifically isolating E. coli within the range of 1.0 to 1.0 × 10 CFU/mL, having a detection limit (LOD) of 10 CFU/mL. The average similarity score among mass spectra for the bacterial capture obtained in independent experiments is calculated as 0.97 ± 0.01 (n = 3), which shows this work's excellent reproducibility for bacterial capture. Bacterial growth on ready-to-eat (RTE) foods during its time of storage was successfully monitored. The present protocol has promising potential for microbial control and pathogen detection in the food industry. 10.1016/j.talanta.2024.125880
Water-soluble ZnCuInSe quantum dots for bacterial classification, detection, and imaging. Geng Hongchao,Qiao Yan,Jiang Ning,Li Chenyi,Zhu Xingqi,Li Weili,Cai Qingyun Analytical and bioanalytical chemistry Bacteria are everywhere and pose severe threats to human health and safety. The rapid classification and sensitive detection of bacteria are vital steps of bacterial community research and the treatment of infection. Herein, we developed optical property-superior and heavy metal-free ZnCuInSe quantum dots (QDs) for achieving rapid discrimination of Gram-positive/Gram-negative bacteria by the naked eye; driven by the structural differences of bacteria, ZnCuInSe QDs are effective in binding to Gram-positive bacteria, especially Staphylococcus aureus (S. aureus), in comparison with Gram-negative bacteria and give discernable color viewed by the naked eye. Meanwhile, based on its distinctive fluorescence response, the accurate quantification of S. aureus was investigated with a photoluminescence system in the concentration ranges of 1 × 10 to 1 × 10 CFU/mL, with a limit of detection of 1 × 10 CFU/mL. Furthermore, we demonstrated the feasibility of ZnCuInSe QDs as a fluorescence probe for imaging S. aureus. This simple strategy based on ZnCuInSe QDs provides an unprecedented step for rapid and effective bacterial discrimination, detection, and imaging. 10.1007/s00216-020-02974-1
Highly Stable Biotemplated InP/ZnSe/ZnS Quantum Dots for Bacterial Monitoring. ACS applied materials & interfaces Despite their unique optical and electrical characteristics, traditional semiconductor quantum dots (QDs) made of heavy metals or carbon are not ideally suited for biomedical applications. Cytotoxicity and environmental concerns are key limiting factors affecting the adoption of QDs from laboratory research to real-world medical applications. Recently, advanced InP/ZnSe/ZnS QDs have emerged as alternatives to traditional QDs due to their low toxicity and optical properties; however, bioconjugation has remained a challenge due to surface chemistry limitations that can lead to instability in aqueous environments. Here, we report water-soluble, biotemplated InP/ZnSe/ZnS-aptamer quantum dots (QDAPTs) with long-term stability and high selectivity for targeting bacterial membrane proteins. QDAPTs show fast binding reaction kinetics (less than 5 min), high brightness, and high levels of stability (3 months) after biotemplating in aqueous solvents. We use these materials to demonstrate the detection of bacterial membrane proteins on common surfaces using a hand-held imaging device, which attests to the potential of this system for biomedical applications. 10.1021/acsami.4c09968