logo logo
The SLC45 gene family of putative sugar transporters. Vitavska Olga,Wieczorek Helmut Molecular aspects of medicine According to the classic point of view, transport of sugars across animal plasma membranes is performed by two families of transporters. Secondary active transport occurs via Na(+) symporters of the SLC5 gene family, while passive transport occurs via facilitative transporters of the SLC2 family. In recent years a new family appeared in the scenery which was called the SLC45 gene family of putative sugar transporters, mainly because of obvious similarities to plant sucrose transporters. The SLC45 family consists of only four members that have been denominated A1-A4. These members apparently have counterparts in all vertebrates. Moreover, their amino acid sequences reveal close homologies also to respective invertebrate proteins such as a recently detected sucrose transporter in Drosophila, and suggest a phylogenetic relationship also to corresponding proteins from plants, fungi and bacteria. This minireview describes the molecular features of its members with a focus on their possible role as sugar transporters. 10.1016/j.mam.2012.05.014
miR-32 and its target SLC45A3 regulate the lipid metabolism of oligodendrocytes and myelin. Shin D,Howng S Y B,Ptáček L J,Fu Y-H Neuroscience Oligodendrocytes generate large amounts of myelin by extension of their cell membranes. Though lipid is the major component of myelin, detailed lipid metabolism in the maintenance of myelin is not understood. We reported previously that miR-32 might be involved in myelin maintenance (Shin et al., 2009). Here we demonstrate a novel role for miR-32 in oligodendrocyte function and development through the regulation of SLC45A3 (solute carrier family 45, member 3) and other downstream targets such as CLDN-11. miR-32 is highly expressed in the myelin-enriched regions of the brain and mature oligodendrocytes, and it promotes myelin protein expression. We found that miR-32 directly regulates the expression of SLC45A3 by binding to the complementary sequence on the 3'UTR of cldn11 and slc45a3. As a myelin-enriched putative sugar transporter, SLC45A3 enhances intracellular glucose levels and the synthesis of long-chain fatty acids. Therefore, overexpression of SLC45A3 triggers neutral lipid accumulation. Interestingly, both overexpression and suppression of SLC45A3 reduces myelin protein expression in mature oligodendrocytes and alters oligodendrocyte morphology, indicating that tight regulation of SLC45A3 expression is necessary for the proper maintenance of myelin proteins and structure. Taken together, our data suggest that miR-32 and its downstream target SLC45A3 play important roles in myelin maintenance by modulating glucose and lipid metabolism and myelin protein expression in oligodendrocytes. 10.1016/j.neuroscience.2012.03.054
Putative role of the H(+)/sucrose symporter SLC45A3 as an osmolyte transporter in the kidney. Vitavska Olga,Edemir Bayram,Wieczorek Helmut Pflugers Archiv : European journal of physiology The solute carrier family 45 a3 member (SLC45A3), known also as prostein, has been implicated with prostate cancer and the regulation of lipid metabolism in oligodendrocytes. Recently, we expressed SLC45A3 in yeast cells and characterised it as a proton-coupled sucrose symporter. However, the physiological functions of SLC45A3 were still unknown. Here, we report that SLC45A3 occurs in the kidney and is highly expressed in the medullary collecting duct (IMCD), a part of the kidney responsible for final urine concentration and faced to hyperosmotic environment. Moreover, messenger RNA (mRNA) expression of endogenous SLC45A3 in rat IMCD cells as well as in NRK52E cells increased up to four-fold under hyperosmotic conditions at 600 mOsmol/kg. Using NRK52E cells as an experimental model, we investigated the proton-coupled sugar transport and found that the uptake of sucrose or glucose was enhanced by hyperosmolarity. Down-regulation of expression by small interfering RNA (siRNA) decreased the osmotically inducible part of sucrose uptake and confirmed the involvement of SLC45A3 in this process. Furthermore, we observed an up to four-fold elevation of sucrose uptake triggered by hyperosmolarity across the apical membrane of NRK52E cells, while uptake across the basolateral membrane was not affected. Due to this finding, we conclude that SLC45A3 may occur at the luminal side of kidney epithelial cells and thus may take up solutes from the tubular fluid. Altogether, we show that SLC45A3 is a novel sugar transporter in kidney and hypothesise that the disaccharide sucrose, and probably the monosaccharides glucose and fructose, may serve as compatible osmolytes in urine. 10.1007/s00424-016-1841-6
SLC45A3 Serves as a Potential Therapeutic Biomarker to Attenuate White Matter Injury After Intracerebral Hemorrhage. Translational stroke research Intracerebral hemorrhage (ICH) is a severe cerebrovascular disease, which impairs patients' white matter even after timely clinical interventions. Indicated by studies in the past decade, ICH-induced white matter injury (WMI) is closely related to neurological deficits; however, its underlying mechanism and pertinent treatment are yet insufficient. We gathered two datasets (GSE24265 and GSE125512), and by taking an intersection among interesting genes identified by weighted gene co-expression networks analysis, we determined target genes after differentially expressing genes in two datasets. Additional single-cell RNA-seq analysis (GSE167593) helped locate the gene in cell types. Furthermore, we established ICH mice models induced by autologous blood or collagenase. Basic medical experiments and diffusion tensor imaging were applied to verify the function of target genes in WMI after ICH. Through intersection and enrichment analysis, gene SLC45A3 was identified as the target one, which plays a key role in the regulation of oligodendrocyte differentiation involving in fatty acid metabolic process, etc. after ICH, and single-cell RNA-seq analysis also shows that it mainly locates in oligodendrocytes. Further experiments verified overexpression of SLC45A3 ameliorated brain injury after ICH. Therefore, SLC45A3 might serve as a candidate therapeutic biomarker for ICH-induced WMI, and overexpression of it may be a potential approach for injury attenuation. 10.1007/s12975-023-01145-5
Proton-associated sucrose transport of mammalian solute carrier family 45: an analysis in Saccharomyces cerevisiae. Bartölke Rabea,Heinisch Jürgen J,Wieczorek Helmut,Vitavska Olga The Biochemical journal The members of the solute carrier 45 (SLC45) family have been implicated in the regulation of glucose homoeostasis in the brain (SLC45A1), with skin and hair pigmentation (SLC45A2), and with prostate cancer and myelination (SLC45A3). However, apart from SLC45A1, a proton-associated glucose transporter, the function of these proteins is still largely unknown, although sequence similarities to plant sucrose transporters mark them as a putative sucrose transporter family. Heterologous expression of the three members SLC45A2, SLC45A3 and SLC45A4 in Saccharomyces cerevisiae confirmed that they are indeed sucrose transporters. [(14)C]Sucrose-uptake measurements revealed intermediate transport affinities with Km values of approximately 5 mM. Transport activities were best under slightly acidic conditions and were inhibited by the protonophore carbonyl cyanide m-chlorophenylhydrazone, demonstrating an H(+)-coupled transport mechanism. Na(+), on the other hand, had no effect on sucrose transport. Competitive inhibition assays indicated a possible transport also of glucose and fructose. Real-time PCR of mouse tissues confirmed mRNA expression of SLC45A2 in eyes and skin and of SLC45A3 primarily in the prostate, but also in other tissues, whereas SLC45A4 showed a predominantly ubiquitous expression. Altogether the results provide new insights into the physiological significance of SLC45 family members and challenge existing concepts of mammalian sugar transport, as they (i) transport a disaccharide, and (ii) perform secondary active transport in a proton-dependent manner. 10.1042/BJ20140572
Database mining analysis revealed the role of the putative H/sugar transporter solute carrier family 45 in skin cutaneous melanoma. Channels (Austin, Tex.) Metabolic reprogramming is common in various cancers. Targeting metabolism to treat tumors is a hot research topic at present. Among them, changes in glucose metabolism in cancer have been widely studied. The Warburg effect maintains a high metabolic level in the tumor, accompanied by changes in glucose transporters. The transmembrane transport of sugar was previously thought to be mediated by SGLT and GLUT. Recently, the Solute Carrier Family(SLC) 45 family may be the third sugar transporter. But the role and value of the SLC45 family in melanoma, a highly malignant skin tumor, is unclear. Our study found that the four members of the SLC45 family, SLC45A1-SLC45A4, were differentially expressed in melanoma, but only SLC45A2 and SLC45A3 had prognostic guiding values. Further analysis revealed that the co-expression patterns of SLC45A2 and SLC45A3 were enriched in multiple metabolic pathways, suggesting their potential role in melanoma. In addition, SLC45A2 and SLC45A3 are also associated with immune cell infiltration. In conclusion, SLC45A2 and SLC45A3 are good prognostic indicators for melanoma and have guiding value for the treatment of melanoma in the future. 10.1080/19336950.2021.1956226
Proteasome stress in skeletal muscle mounts a long-range protective response that delays retinal and brain aging. Cell metabolism Neurodegeneration in the central nervous system (CNS) is a defining feature of organismal aging that is influenced by peripheral tissues. Clinical observations indicate that skeletal muscle influences CNS aging, but the underlying muscle-to-brain signaling remains unexplored. In Drosophila, we find that moderate perturbation of the proteasome in skeletal muscle induces compensatory preservation of CNS proteostasis during aging. Such long-range stress signaling depends on muscle-secreted Amyrel amylase. Mimicking stress-induced Amyrel upregulation in muscle reduces age-related accumulation of poly-ubiquitinated proteins in the brain and retina via chaperones. Preservation of proteostasis stems from the disaccharide maltose, which is produced via Amyrel amylase activity. Correspondingly, RNAi for SLC45 maltose transporters reduces expression of Amyrel-induced chaperones and worsens brain proteostasis during aging. Moreover, maltose preserves proteostasis and neuronal activity in human brain organoids challenged by thermal stress. Thus, proteasome stress in skeletal muscle hinders retinal and brain aging by mounting an adaptive response via amylase/maltose. 10.1016/j.cmet.2021.03.005