logo logo
Enhanced Immune Response in Immunodeficient Mice Improves Peripheral Nerve Regeneration Following Axotomy. Bombeiro André L,Santini Júlio C,Thomé Rodolfo,Ferreira Elisângela R L,Nunes Sérgio L O,Moreira Bárbara M,Bonet Ivan J M,Sartori Cesar R,Verinaud Liana,Oliveira Alexandre L R Frontiers in cellular neuroscience Injuries to peripheral nerves cause loss of motor and sensory function, greatly affecting life quality. Successful repair of the lesioned nerve requires efficient cell debris removal, followed by axon regeneration and reinnervation of target organs. Such process is orchestrated by several cellular and molecular events in which glial and immune cells actively participate. It is known that tissue clearance is largely improved by macrophages, which activation is potentiated by cells and molecules of the acquired immune system, such as T helper lymphocytes and antibodies, respectively. In the present work, we evaluated the contribution of lymphocytes in the regenerative process of crushed sciatic nerves of immunocompetent (wild-type, WT) and T and B-deficient (RAG-KO) mice. In Knockout animals, we found increased amount of macrophages under basal conditions and during the initial phase of the regenerative process, that was evaluated at 2, 4, and 8 weeks after lesion (wal). That parallels with faster axonal regeneration evidenced by the quantification of neurofilament and a growth associated protein immunolabeling. The motor function, evaluated by the sciatic function index, was fully recovered in both mouse strains within 4 wal, either in a progressive fashion, as observed for RAG-KO mice, or presenting a subtle regression, as seen in WT mice between 2 and 3 wal. Interestingly, boosting the immune response by early adoptive transference of activated WT lymphocytes at 3 days after lesion improved motor recovery in WT and RAG-KO mice, which was not ameliorated when cells were transferred at 2 wal. When monitoring lymphocytes by in vivo imaging, in both mouse strains, cells migrated to the lesion site shortly after transference, remaining in the injured limb up to its complete motor recovery. Moreover, a first peak of hyperalgesia, determined by von-Frey test, was coincident with increased lymphocyte infiltration in the damaged paw. Overall, the present results suggest that a wave of immune cell infiltration takes place during subacute phase of axonal regeneration, resulting in transient set back of motor recovery following peripheral axonal injury. Moreover, modulation of the immune response can be an efficient approach to speed up nerve regeneration. 10.3389/fncel.2016.00151
Peripheral nerve injuries: an international survey of current treatments and future perspectives. Scholz Thomas,Krichevsky Alisa,Sumarto Andrew,Jaffurs Daniel,Wirth Garrett A,Paydar Keyianoosh,Evans Gregory R D Journal of reconstructive microsurgery Peripheral nerve injuries are a serious health concern and leave many patients with lifelong disabilities. There is little information about incidences, current practice, outcomes, and type of research that may help delineate new strategies. A questionnaire was designed to determine characteristics of peripheral nerve injuries and the need for alternative strategies and sent to 889 plastic, hand, trauma, and orthopedic surgeons in 49 countries; 324 completed surveys were collected and analyzed (total response rate of 36.45%). The majority of institutions treat more than 3000 patients annually. Trauma was the leading cause of injury with the majority located on the upper extremity. In most cases, a primary repair was achieved, but 2.52% were unrepairable. The overall outcome was linked to their Sunderland classification (SCL). A grade 1 nerve injury (SCL-1) reached a maximum outcome after 7.15 months. SCL-2, -3, -4, and -5 needed 10.69, 14.08, 17.66, and 19.03 months, respectively. Tissue engineering was considered the most important research field, resulting in a visual analogue scale of 8.6. Despite marked advances in the treatment of peripheral nerve injuries, clinical outcomes still appear unsatisfactory. The importance of research in the field of tissue engineering should be emphasized as a pathway toward improving these outcomes. 10.1055/s-0029-1215529
Advances in peripheral nerve regeneration. Scheib Jami,Höke Ahmet Nature reviews. Neurology Rodent models of nerve injury have increased our understanding of peripheral nerve regeneration, but clinical applications have been scarce, partly because such models do not adequately recapitulate the situation in humans. In human injuries, axons are often required to extend over much longer distances than in mice, and injury leaves distal nerve fibres and target tissues without axonal contact for extended amounts of time. Distal Schwann cells undergo atrophy owing to the lack of contact with proximal neurons, which results in reduced expression of neurotrophic growth factors, changes in the extracellular matrix and loss of Schwann cell basal lamina, all of which hamper axonal extension. Furthermore, atrophy and denervation-related changes in target tissues make good functional recovery difficult to achieve even when axons regenerate all the way to the target tissue. To improve functional outcomes in humans, strategies to increase the speed of axonal growth, maintain Schwann cells in a healthy, repair-capable state and keep target tissues receptive to reinnervation are needed. Use of rodent models of chronic denervation will facilitate our understanding of the molecular mechanisms of peripheral nerve regeneration and create the potential to test therapeutic advances. 10.1038/nrneurol.2013.227