logo logo
MYB20, MYB42, MYB43, and MYB85 Regulate Phenylalanine and Lignin Biosynthesis during Secondary Cell Wall Formation. Geng Pan,Zhang Su,Liu Jinyue,Zhao Cuihuan,Wu Jie,Cao Yingping,Fu Chunxiang,Han Xue,He Hang,Zhao Qiao Plant physiology Lignin is a phenylpropanoid-derived polymer that functions as a major component of cell walls in plant vascular tissues. Biosynthesis of the aromatic amino acid Phe provides precursors for many secondary metabolites, including lignins and flavonoids. Here, we discovered that MYB transcription factors MYB20, MYB42, MYB43, and MYB85 are transcriptional regulators that directly activate lignin biosynthesis genes and Phe biosynthesis genes during secondary wall formation in Arabidopsis (). Disruption of , , , and resulted in growth development defects and substantial reductions in lignin biosynthesis. In addition, our data showed that these MYB proteins directly activated transcriptional repressors that specifically inhibit flavonoid biosynthesis, which competes with lignin biosynthesis for Phe precursors. Together, our results provide important insights into the molecular framework for the lignin biosynthesis pathway. 10.1104/pp.19.01070
MYB103 is required for FERULATE-5-HYDROXYLASE expression and syringyl lignin biosynthesis in Arabidopsis stems. Öhman David,Demedts Brecht,Kumar Manoj,Gerber Lorenz,Gorzsás András,Goeminne Geert,Hedenström Mattias,Ellis Brian,Boerjan Wout,Sundberg Björn The Plant journal : for cell and molecular biology The transcription factor MYB103 was previously identified as a member of the transcriptional network regulating secondary wall biosynthesis in xylem tissues of Arabidopsis, and was proposed to act on cellulose biosynthesis. It is a direct transcriptional target of the transcription factor SECONDARY WALL ASSOCIATED NAC DOMAIN PROTEIN 1 (SND1), and 35S-driven dominant repression or over-expression of MYB103 modifies secondary wall thickness. We identified two myb103 T-DNA insertion mutants and chemically characterized their lignocellulose by pyrolysis/GC/MS, 2D NMR, FT-IR microspectroscopy and wet chemistry. The mutants developed normally but exhibited a 70-75% decrease in syringyl (S) lignin. The level of guaiacyl (G) lignin was co-ordinately increased, so that total Klason lignin was not affected. The transcript abundance of FERULATE-5-HYDROXYLASE (F5H), the key gene in biosynthesis of S lignin, was strongly decreased in the myb103 mutants, and the metabolomes of the myb103 mutant and an F5H null mutant were very similar. Other than modification of the lignin S to G ratio, there were only very minor changes in the composition of secondary cell-wall polymers in the inflorescence stem. In conclusion, we demonstrate that F5H expression and hence biosynthesis of S lignin are dependent on MYB103. 10.1111/tpj.12018
Jasmonate activates secondary cell wall biosynthesis through MYC2-MYB46 module. The Plant journal : for cell and molecular biology Formation of secondary cell wall (SCW) is tightly regulated spatiotemporally by various developmental and environmental signals. Successful fine-tuning of the trade-off between SCW biosynthesis and stress responses requires a better understanding of how plant growth is regulated under environmental stress conditions. However, the current understanding of the interplay between environmental signaling and SCW formation is limited. The lipid-derived plant hormone jasmonate (JA) and its derivatives are important signaling components involved in various physiological processes including plant growth, development, and abiotic/biotic stress responses. Recent studies suggest that JA is involved in SCW formation but the signaling pathway has not been studied for how JA regulates SCW formation. We tested this hypothesis using the transcription factor MYB46, a master switch for SCW biosynthesis, and JA treatments. Both the transcript and protein levels of MYB46, a master switch for SCW formation, were significantly increased by JA treatment, resulting in the upregulation of SCW biosynthesis. We then show that this JA-induced upregulation of MYB46 is mediated by MYC2, a central regulator of JA signaling, which binds to the promoter of MYB46. We conclude that this MYC2-MYB46 module is a key component of the plant response to JA in SCW formation. 10.1111/tpj.16541
The MYB46/MYB83-mediated transcriptional regulatory programme is a gatekeeper of secondary wall biosynthesis. Ko J-H,Jeon H-W,Kim W-C,Kim J-Y,Han K-H Annals of botany BACKGROUND:The secondary cell wall is a defining feature of xylem cells and allows them to resist both gravitational forces and the tension forces associated with the transpirational pull on their internal columns of water. Secondary walls also constitute the majority of plant biomass. Formation of secondary walls requires co-ordinated transcriptional regulation of the genes involved in the biosynthesis of cellulose, hemicellulose and lignin. This co-ordinated control appears to involve a multifaceted and multilayered transcriptional regulatory programme. SCOPE:Transcription factor MYB46 (At5g12870) has been shown to function as a master regulator in secondary wall formation in Arabidopsis thaliana. Recent studies show that MYB46 not only regulates the transcription factors but also the biosynthesis genes for all of the three major components (i.e. cellulose, hemicellulose and lignin) of secondary walls. This review considers our current understanding of the MYB46-mediated transcriptional regulatory network, including upstream regulators, downstream targets and negative regulators of MYB46. CONCLUSIONS AND OUTLOOK:MYB46 is a unique transcription factor in that it directly regulates the biosynthesis genes for all of the three major components of the secondary wall as well as the transcription factors in the biosynthesis pathway. As such, MYB46 may offer a useful means for pathway-specific manipulation of secondary wall biosynthesis. However, realization of this potential requires additional information on the 'MYB46-mediated transcriptional regulatory programme', such as downstream direct targets, upstream regulators and interacting partners of MYB46. 10.1093/aob/mcu126