logo logo
Cannabis significantly alters DNA methylation of the human ovarian follicle in a concentration-dependent manner. Molecular human reproduction Cannabis is increasingly consumed by women of childbearing age, and the reproductive and epigenetic effects are unknown. The purpose of this study was to evaluate the potential epigenetic implications of cannabis use on the female ovarian follicle. Whole-genome methylation was assessed in granulosa cells from 14 matched case-control patients. Exposure status was determined by liquid chromatography-mass spectrometry (LC-MS/MS) measurements of five cannabis-derived phytocannabinoids in follicular fluid. DNA methylation was measured using the Illumina TruSeq Methyl Capture EPIC kit. Differential methylation, pathway analysis and correlation analysis were performed. We identified 3679 differentially methylated sites, with two-thirds affecting coding genes. A hotspot region on chromosome 9 was associated with two genomic features, a zinc-finger protein (ZFP37) and a long non-coding RNA (FAM225B). There were 2214 differentially methylated genomic features, 19 of which have been previously implicated in cannabis-related epigenetic modifications in other organ systems. Pathway analysis revealed enrichment in G protein-coupled receptor signaling, cellular transport, immune response and proliferation. Applying strict criteria, we identified 71 differentially methylated regions, none of which were previously annotated in this context. Finally, correlation analysis revealed 16 unique genomic features affected by cannabis use in a concentration-dependent manner. Of these, the histone methyltransferases SMYD3 and ZFP37 were hypomethylated, possibly implicating histone modifications as well. Herein, we provide the first DNA methylation profile of human granulosa cells exposed to cannabis. With cannabis increasingly legalized worldwide, further investigation into the heritability and functional consequences of these effects is critical for clinical consultation and for legalization guidelines. 10.1093/molehr/gaac022
Cannabinoid receptors and the regulation of bone mass. Bab I,Zimmer A British journal of pharmacology A functional endocannabinoid system is present in several mammalian organs and tissues. Recently, endocannabinoids and their receptors have been reported in the skeleton. Osteoblasts, the bone forming cells, and osteoclasts, the bone resorbing cells, produce the endocannabinoids anandamide and 2-arachidonoylglycerol and express CB2 cannabinoid receptors. Although CB2 has been implicated in pathological processes in the central nervous system and peripheral tissues, the skeleton appears as the main system physiologically regulated by CB2. CB2-deficient mice show a markedly accelerated age-related bone loss and the CNR2 gene (encoding CB2) in women is associated with low bone mineral density. The activation of CB2 attenuates ovariectomy-induced bone loss in mice by restraining bone resorption and enhancing bone formation. Hence synthetic CB2 ligands, which are stable and orally available, provide a basis for developing novel anti-osteoporotic therapies. Activation of CB1 in sympathetic nerve terminals in bone inhibits norepinephrine release, thus balancing the tonic sympathetic restrain of bone formation. Low levels of CB1 were also reported in osteoclasts. CB1-null mice display a skeletal phenotype that is dependent on the mouse strain, gender and specific mutation of the CB1 encoding gene, CNR1. 10.1038/sj.bjp.0707593