logo logo
Activation of the melanocortin-1 receptor attenuates neuronal apoptosis after traumatic brain injury by upregulating Merlin expression. Brain research bulletin Traumatic brain injury (TBI) is a common disease worldwide with high mortality and disability rates. Besides the primary mechanical injury, the secondary injury associated with TBI can also induce numerous pathological changes, such as brain edema, nerve apoptosis, and neuroinflammation, which further aggravates neurological dysfunction and even causes the death due to the primary injury. Among them, neuronal apoptosis is a key link in the injury. Melanocortin-1 receptor (MC1R) is a G protein coupled receptor, belonging to the melanocortin receptor family. Studies have shown that activation of MC1R inhibits oxidative stress and apoptosis, and confers neuroprotective effects against various neurological diseases. Merlin is a protein product of the NF2 gene, which is widely expressed in the central nervous system (CNS) of mice, rats, and humans. Studies have indicated that Merlin is associated with MC1R. In this study, we explored the anti-apoptotic effects and potential mechanisms of MC1R. A rat model of TBI was established through controlled cortical impact. The MC1R-specific agonist Nle4-D-Phe7-α-Melanocyte (NDP-MSH) and the inhibitor MSG-606 were employed to explore the effects of MC1R and Merlin following TBI and investigated the associated mechanisms. The results showed that the expression levels of MC1R and Merlin were upregulated after TBI, and activation of MC1R promoted Merlin expression. Further, we found that MC1R activation significantly improved neurological dysfunction and reduced brain edema and neuronal apoptosis induced by TBI in rats. Mechanistically, its neuroprotective function and anti-apoptotic were partly associated with MC1R activation. In conclusion, we demonstrated that MC1R activation after TBI may inhibit apoptosis and confer neuroprotection by upregulating the expression of Merlin. 10.1016/j.brainresbull.2024.110870
The circadian clock regulator Bmal1 affects traumatic brain injury in rats through the p38 MAPK signalling pathway. Li Bing,Li Di,Ni Haibo,Liu Chenglin,Xiong Jian,Liu Huixiang,Gao Rong,Zhang Li,Chen Gang Brain research bulletin Traumatic brain injury (TBI) is still one of the main causes of death and disability worldwide. Bmal1 (brain and muscle Arnt-like protein-1) is the most central factor of the circadian rhythms that control life and cells. Studies have shown that Bmal1 is involved in inflammation, oxidative stress, vasodilation, glucose and lipid metabolism. This study explored the effect of Bmal1 on secondary brain injury after TBI in rats and the possible mechanism. We established a rat model of TBI induced by the free fall of a weight in rats. The Western blotting and immunofluorescence results showed that the Bmal1 levels decreased in the cerebral cortex after TBI, especially at 48 h. The effects of Bmal1 levels on rats after TBI were evaluated by brain oedema measurement, adhesive removal tests, behavioural tests, and TUNEL and FJC staining. We found that the recombinant Bmal1 protein increased Bmal1 levels after TBI and reduced brain oedema, neurobehavioural injury, somatosensory disturbances, and nerve cell necrosis and apoptosis. The ELISA results showed that Bmal1 overexpression could reduce the inflammatory factors IL-4 and TNF-α after TBI. In contrast, inhibiting Bmal1 expression had the opposite effect. The changes in Bmal1 levels were closely related to the phosphorylation of p38 MAPK after TBI. In conclusion, a decrease in Bmal1 after TBI may exacerbate pathological symptoms in vivo by activating p38 MAPK phosphorylation. 10.1016/j.brainresbull.2021.11.003
USP11 exacerbates neuronal apoptosis after traumatic brain injury via PKM2-mediated PI3K/AKT signaling pathway. Brain research Ubiquitin-specific protease 11 (USP11) is a ubiquitin-specific protease involved in the regulation of protein ubiquitination. However, its role in traumatic brain injury (TBI) remains unclear. This experiment suggests that USP11 is possibly involved in regulating neuronal apoptosis in TBI. Therefore, we use precision impactor device to established a TBI rat model and assayed the role of USP11 by overexpressing and inhibiting USP11. We found that Usp11 expression increased after TBI. In addition, we hypothesized that pyruvate kinase M2 (PKM2) is a potential USP11 target and experimentally confirmed that upregulation of Usp11 increased Pkm2 expression. Furthermore, elevated USP11 levels exacerbate blood-brain barrier damage, brain edema, and neurobehavioral impairment and cause apoptosis induction through Pkm2 upregulation. Moreover, we hypothesize that PKM2-induced neuronal apoptosis is mediated by the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Our findings were confirmed by changes in Pi3k and Akt expression with Usp11 upregulation and downregulation and PKM2 inhibition. In conclusion, our findings show that USP11 exacerbates injury in TBI through PKM2 and causes neurological impairment and neuronal apoptosis through the PI3K/AKT signaling pathway. 10.1016/j.brainres.2023.148321
Potential mechanism of TMEM2/CD44 in endoplasmic reticulum stress‑induced neuronal apoptosis in a rat model of traumatic brain injury. International journal of molecular medicine Traumatic brain injury (TBI) can lead to the disruption of endoplasmic reticulum (ER) homeostasis in neurons and induce ER stress. Transmembrane protein 2 (TMEM2) may regulate ER stress through the p38/ERK signaling pathway, independent of the classic unfolded protein response (UPR) pathway. The present study examined the expression of TMEM2 following TBI in a rat model, in an aim to determine whether the mitogen‑activated protein kinase (MAPK) signaling pathway is controlled by TMEM2/CD44 to mitigate secondary brain injury. For this purpose, 89 Sprague‑Dawley rats were used to establish the model of TBI, and TMEM2 siRNA was used to silence TMEM2. Western blot analysis, immunofluorescence, TUNEL assay and Fluoro‑Jade C staining, the wet‑dry method and behavioral scoring were used for analyses. The results revealed that TMEM2 was activated following TBI in rats. The silencing of TMEM2 resulted in a significant increase in the levels of p38 and ERK (components of MAPK signaling), while brain edema, neuronal apoptosis and degeneration were significantly aggravated. TBI increased TMEM2/CD44‑aggravated brain edema and neurological impairment, possibly by regulating ERK and p38 signaling. TMEM2/CD44 may thus be a target for the prevention and control of TBI. 10.3892/ijmm.2023.5322
Pramipexole alleviates traumatic brain injury in rats through inhibiting necroptosis. Neuroscience letters Traumatic brain injury (TBI) has high morbidity, mortality and disability. Cell death runs through its occurrence and development. Necroptosis is a recently discovered mode of cell death. Its mechanism still has not been fully resolved. Studies which researcher published before showed that: pramipexole could play a neuroprotective role by inducing hypothermia; receptor interacting protein 1 (RIP1) could play a neuroprotective role by regulating necroptosis. On this basis, we carried out the experiments and it was observed that we could establish a hypothermia model of SD rats safely and effectively via pramipexole. Meanwhile, necroptosis and expression of RIP1 and its related proteins did change. As a result, the prognosis of TBI rats did improve. In brief, we found that pramipexole could play a protective role after TBI by inhibiting necroptosis. We hope our investigation would provide new theoretical basis to improve the outcome of clinical TBI patients. 10.1016/j.neulet.2022.136911
Catalpol Ameliorates Oxidative Stress and Neuroinflammation after Traumatic Brain Injury in Rats. Neurochemical research Oxidative stress and neuroinflammation are deemed the prime causes of neurological damage after traumatic brain injury (TBI). Catalpol, an active ingredient of Rehmannia glutinosa, has been suggested to possess antioxidant and anti-inflammatory properties. This study was designed to investigate the protective effects of catalpol against TBI and the underlying mechanisms of action of catalpol. A rat model of TBI was induced by controlled cortical impact. Catalpol (10 mg/kg) or vehicle was administered via intravenous injection 1 h post trauma and then once daily for 3 consecutive days. Following behavioural tests performed 72 h after TBI, the animals were sacrificed and pericontusional areas of the brain were collected for neuropathological experiments and analysis. Treatment with catalpol significantly ameliorated neurological impairment, blood-brain barrier disruption, cerebral oedema, and neuronal apoptosis after TBI (P < 0.05). Catalpol also attenuated TBI-induced oxidative insults, as evidenced by reduced reactive oxygen species generation; decreased malondialdehyde levels; and enhanced superoxide dismutase, catalase and glutathione peroxidase activity (P < 0.05). Catalpol promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 and the expression of its downstream antioxidant enzyme HO-1 following TBI (P < 0.05). Moreover, catalpol treatment markedly inhibited posttraumatic microglial activation and neutrophil infiltration, suppressed NLRP3 inflammasome activation and reduced the production of the proinflammatory cytokine IL-1β (P < 0.05). Taken together, these findings reveal that catalpol provides neuroprotection against oxidative stress and neuroinflammation after TBI in rats. Therefore, catalpol may be a novel treatment strategy for TBI patients. 10.1007/s11064-022-03796-6
Inhibition of BRD4 expression attenuates the inflammatory response and apoptosis by downregulating the HMGB-1/NF-κB signaling pathway following traumatic brain injury in rats. Neuroscience letters Neuroinflammation plays an important part in secondary traumatic brain injury (TBI). Bromodomain-4 (BRD4) exerts specific proinflammatory effects in various neuropathological conditions. However, the underlying mechanism of action of BRD4 after TBI is not known. We measured BRD4 expression after TBI and investigated its possible mechanism of action. We established a model of craniocerebral injury in rats. After different intervention measures, we used western blotting, immunofluorescence, real-time reverse transcription-quantitative polymerase chain reaction, neuronal apoptosis, and behavioral tests to evaluate the effect of BRD4 on brain injury. At 72 h after brain injury, BRD4 overexpression aggravated the neuroinflammatory response, neuronal apoptosis, neurological dysfunction, and blood-brain-barrier damage, whereas upregulating expression of HMGB-1 and NF-κB had the opposite effect. Glycyrrhizic acid could reverse the proinflammatory effect of BRD4 overexpression upon TBI. Our results suggest that: (i) BRD4 may have a proinflammatory role in secondary brain injury through the HMGB-1/NF-κB signaling pathway; (ii) inhibition of BRD4 expression may play a part in secondary brain injury. BRD4 could be targeted therapy strategy for brain injury. 10.1016/j.neulet.2023.137385
Advances in the pathological mechanisms and clinical treatments of chronic visceral pain. Molecular pain Chronic visceral pain stems from internal organs and is frequently associated with functional gastrointestinal disorders, like irritable bowel syndrome (IBS). Since the underlying mechanisms of visceral pain remain largely unclear, clinical management is often limited and ineffective. Comprehensive research into the pathogenesis of visceral pain, along with the development of personalized therapeutic strategies, is crucial for advancing treatment options. Studies suggest that imbalances in purinergic receptors and neural circuit function are closely linked to the onset of visceral pain. In this review, we will explore the etiology and pathological mechanisms underlying visceral pain, with a focus on ion channels, epigenetic factors, and neural circuits, using functional gastrointestinal disorders as case studies. Finally, we will summarize and evaluate emerging treatments and potential initiatives aimed at managing visceral pain. 10.1177/17448069241305942
Distinct circuits and molecular targets of the paraventricular hypothalamus decode visceral and somatic pain. Neuron Visceral and somatic pain serve as protective mechanisms against external threats. Accumulated evidence has confirmed that the paraventricular hypothalamus (PVH) plays an important role in the perception of visceral and somatic pain, whereas the exact neural pathways and molecules distinguishing them remain unclear. Here, we report distinct neuronal ensembles within the PVH dedicated to processing visceral and somatic pain signals. An essential discovery is the distinct expression of P2X3R and VIPR2 in visceral and somatic pain-activated PVH neuronal ensembles. Furthermore, visceral pain- and somatic pain-responsive PVH neuronal ensembles project to specific downstream regions, the ventral part of the lateral septal nucleus (LSV) and the caudal part of the zona incerta (ZIC), respectively. These findings unveil that the PVH acts as a pain sorting center that distinctly processes visceral and somatic pain, identifying potential molecular targets for specific pain processing and providing a new framework for comprehending how the brain processes nociceptive information. 10.1016/j.neuron.2024.08.024