logo logo
Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nature reviews. Drug discovery NADPH oxidases are a family of enzymes that generate reactive oxygen species (ROS). The NOX1 (NADPH oxidase 1) and NOX2 oxidases are the major sources of ROS in the artery wall in conditions such as hypertension, hypercholesterolaemia, diabetes and ageing, and so they are important contributors to the oxidative stress, endothelial dysfunction and vascular inflammation that underlies arterial remodelling and atherogenesis. In this Review, we advance the concept that compared to the use of conventional antioxidants, inhibiting NOX1 and NOX2 oxidases is a superior approach for combating oxidative stress. We briefly describe some common and emerging putative NADPH oxidase inhibitors. In addition, we highlight the crucial role of the NADPH oxidase regulatory subunit, p47phox, in the activity of vascular NOX1 and NOX2 oxidases, and suggest how a better understanding of its specific molecular interactions may enable the development of novel isoform-selective drugs to prevent or treat cardiovascular diseases. 10.1038/nrd3403
Research progress on the role of gal-3 in cardio/cerebrovascular diseases. Cao Zhan-Qi,Yu Xin,Leng Ping Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie Galectin-3 (gal-3), a member of the galectin family, is a glycoprotein with high affinity for β-galactoside. Gal-3 is a cytoplasmically synthesized protein that can shuttle between the cytoplasm and nucleus and can even be transported to the membrane and secreted into the extracellular environment. Cardio/cerebrovascular diseases generally refer to ischemic or hemorrhagic diseases occurring in the heart, brain and systemic tissues, which are characterized by high morbidity, high disability rates and high mortality rates. To date, considerable research has demonstrated that gal-3 expression is aberrantly increased and plays important roles in cardio/cerebrovascular diseases, such as acute ischemic stroke (AIS), myocardial fibrosis, acute coronary syndrome (ACS), and heart failure (HF). Hence, understanding the biological roles of gal-3 in these diseases may be essential for cardio/cerebrovascular disease treatment and diagnosis to improve patient quality of life. In this review, we summarize current research on the roles of gal-3 in human cardiovascular diseases and potential inhibitors of gal-3, which may provide new strategies for disease therapies. 10.1016/j.biopha.2020.111066